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Abstract

Microtubules (MT) are filamentous cytoskeletal struc-
tures composed of tubulin protein subunits. Through their
dynamic behaviors, they participate in many essential cellu-
lar functions. MT dynamics are traditionally analyzed from
time lapse images by manual techniques that are laborious,
approximate and often of limited analytical value. Recently,
computational methods have been applied to the problems
of detection and tracking of MTs in live cell images. In
this paper, we discuss computational methods for extract-
ing dynamics features from live cell MT image sequences.
We provide examples of how these features can be used in
MT dynamics analysis and improve the manual analytical
capabilities.

1. Introduction

Fluorescence imaging is a mainstream data acquisition
tool in cell biology. This high throughput data channel pro-
duces an immense amount of data every year. However,
the analysis of the biological phenomena remains largely a
manual task. Quantitative studies are often subject to vari-
ability, user bias, approximation errors, and limited manual
measurement and analysis capabilities, while requiring sub-
stantial time and effort to achieve statistical significance.
Thus, computer vision based tools find pertinent applica-
tions in the automated analysis of biological image col-
lections. Furthermore, biological experimentation becomes
more and more centered around the newly available com-
putational methods. Here, we discuss recent methods pro-
posed for the data collection and analysis aspects of micro-
tubule (MT) image sequences.

As a major component of the cytoskeleton, MTs are
tubular polymers composed ofα andβ tubulin dimers asso-
ciated by non-covalent interactions. They measure25nm in
diameter and severalµm to mm in length. MTs participate
in many critical cellular functions through changing their
length, Fig. 1. The alternation between the growing and
shortening cycles is commonly referred as theMT dynamic

instability. These dynamic behaviors are finely regulated
within the cell by the MT-associated proteins. For exam-
ple, recognition of the tubulin conformation at the MT tip
is a model mechanism by which the tip-tracking proteins
are predicted to regulate MT dynamics. MT-targeted drugs
are pharmacological agents developed with the objective of
regulatory operation.

Research on MT dynamics seeks to understand under-
lying cellular mechanisms relating to normal and abnormal
functioning of the cell in response to changes in environ-
mental conditions [5] through the regulatory changes insti-
gated by the numerous agents. A common conjecture is that
certain vital diseases such as Alzheimer’s and cancer are at
least correlated with the regulatory abnormalities in the MT
dynamics. For further structural and functional details we
refer the reader to [2].

(a) (b) (c)

Figure 1. Consecutive frames from a MT video. The marked MTs
change their length in subsequent frames.

MT dynamic behaviors are quantified by collecting
growth and shortening statistics of MT populations from
time-lapse image sequences. The primary technique is to
manually track the tip positions of individual MTs over the
image sequence. Then, the tip positions are converted to
MT length estimates as the Euclidean distance from a point
on the MT body that is fixed throughout the video. These
estimates are graphed as statistics of recording time per MT,
termed as thelife history plot. The statistics, including the
rates and extents of dynamic events and the frequencies of
switching between the types of events are computed for MT
populations from the life history plots. This aggregated in-
formation is used in determining the ability of the treatment
agent to promote or suppress MT dynamics. For example,
paclitaxel (Taxol) –a cancer therapeutic– is shown to stabi-
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lize MT dynamics, [7, 8].
While the immediate goal is to assist the user with the

analysis, it may be possible to boost the analysis efficacy
beyond the manual practice. Specifically, it is possible to
quantify data at a richer level than what is manually feasi-
ble. For example, once the MT body is segmented curvature
variations can be computed easily, where such features are
not feasible to calculate manually. In the rest of this pa-
per we describe the MT tracking and time series analysis
problems and related challenges. We report on recent ap-
proaches addressing these problems.

2. Methods

Biological content presents specific challenges. For ex-
ample, despite highly controlled image acquisition, image
quality is variable. In live cell imaging, the experimenter
has little control on the spatial distribution of objects. Fur-
thermore, typical images consist of 2D projections of 3D
biological structures, resulting in a mesh of image objects
where intersections, occlusions, and similar visual chal-
lenges become a norm rather than exception.

Many curve or contour detection techniques remain inef-
fective in segmenting the MT body due to a combination of
excessive natural clutter and frequent local intensity varia-
tions. In this section, we discuss two tracking methods: [3]
uses active contours for extracting the MT length as open
ended curves, and [10] uses a hidden Markov model based
approach for tracking the deformation of a curve after ini-
tially tracing it on the first frame. From the usage point
of view, the two methods provide different user interaction
stipulations. The first technique is less amenable for user
interaction than the second one.

2.1. Automated tracking

We define the MT tracking problem as following the
movements of an individual MT body over the frames of a
video. The goal is to quantify the changing patterns of MT
lengths during the observation period. Thus, lengths must
be measured in each frame. Manual practice is to estimate
the length as the Euclidean distance between the tip position
and an arbitrary origin that is fixed throughout the frames.
In computational domain the length can be measured as the
arc length along the MT body, Fig.5. Note that the problem
of tracking MT tips is different than tracking MT bodies.

In [3], the tracking method consists of the following
components:

• detecting the MT tips,
• matching tip positions on different frames,
• extracting MT body from tip tracks.

The rationale behind this approach is that MT tip detec-
tion has a better success rate than that of MT segmentation

over the entire video. Note that this may not be true for any
given frame. Once the tips are located and matched then
the body extraction problem is simplified since only those
MTs that were found to have consistent tip tracks are to be
extracted.

The tip detection problem is addressed as follows. MT
body is assumed to be a locally linear structure. Thus, a line
filter, second derivative of Gaussian, is applied to the image
for enhancing the polymer mass of the MT network. If the
intensity of a pixel at(x, y) is denoted byI(x, y), then the
filter response is given by

If (x, y) = max
θ

(I(x, y) ∗G′′
σ,θ(x, y)) (1)

whereG′′
σ,θ(x, y) is the second derivative of the Gaussian

kernel with scaleσ and the derivative taken along an orien-
tationθ at position(x, y). From the binarized and thinned
response image all candidate tip positions are recorded. The
candidates are then further classified for their potential to
be actual tips. Example results from consecutive frames are
shown in Fig.2.

(a) (b)

Figure 2. Tip detection results in consecutive frames from a MT
video.

Once the tip positions are located on all video frames,
the next step is to find correspondences between the tip po-
sitions to establish tip tracks. The crucial problem is to be
able to find a method that is flexible enough to handle occa-
sional false positives or true negatives of the tip detection.
This is handled by a multi-frame graph matching approach.
A graphG = (V,E) is constructed with the verticesV as
tip positions in all frames and the edgesE as the similar-
ities computed from positional distances between vertices.
The edge weights of the graph represent the matching po-
tential of corresponding two tips in different frames. Note
that the frames do not need to be consecutive for estimating
edge weights. Thus, MT tip tracks can be generated with
missing frames. Each tip can be assigned to at most one
final tip track. Avertex disjoint path coverC is a covering
of G where each vertex ofG is in one and only one path
of C. The weight of a path cover is defined as the sum of
weights of its edges. Thus, finding the best MT tip tracks
corresponds to finding the maximum weight path cover of
G.

Given the tip track of a MT over the frames of a video,



its length is estimated by extracting MT body as follows.
Let Tt denote the position of the tipT in frame t, andO
denote an arbitrary origin on the MT body that is fixed over
the frames. We define the MT body as the curvesCt(O, Tt)
betweenO andTt. The body extraction refers to finding
a suitableO and adjustingCt over the framest. O is es-
timated on the initial frame by maximizing a geodesic dis-
tance function fromT1 within a window of interest via Fast
Marching, [11]. Then, theCt are estimated by using an
open-ended active contour model. Using Fast Marching on
intensity may lead to erroneous traces, Fig.3. Note that
theCt are not required to correspond to the actual MT body
for the purpose of determining the MT growth or shortening
from the differences in length.

(a) (b) (c)

Figure 3. Example results of Fast Marching. (a) shows the orig-
inal region. Fast Marching was run on the marked MT segment
between two points. The resulting search space is shown in (b).
with the shortest path marked between the points. Similar result
on another MT is shown in (c), where the shortest path is swayed
by the bright spots on a neighboring MT.

If a tip was missed in some frame of the video, then the
MT length cannot be computed reliably for that frame. Oc-
casional missing data points should not have a significant
effect on the time series analysis.

2.1.1 Evaluation of automated tracking

Visual tracking results are shown in Fig.4. A quantita-
tive evaluation of this method on26 MTs against manually
tracked data revealed a mean error rate of2.85 pixels with
a standard deviation of4.36. This error level is acceptable
since the images capture the fluorescence emissions from a
25nm structure within 3 pixels.

Recall that the ultimate goal of the MT tracking is not
necessarily to track all MTs in a video, but to characterize
a regulatory agent by quantifying the dynamic properties of
a sufficiently large number of MTs. Therefore, algorithm
evaluation is not a straightforward procedure in the biolog-
ical relevance sense. For example, while the final perfor-
mance depends upon the accuracy of the initial tip detection
step, the tip detection may be designed to overestimate the
number of candidates since the latter steps are constructed
to eliminate inconsistencies among tip positions. In fact,
we found that while the accuracy of the tracking algorithm

(a) (b) (c)

(d) (e) (f)

Figure 4. Example tracking results. Selected original frames are
shown in the top row, with corresponding tracking results shown
in the bottom row.

is not very high in matching the ground truth on individ-
ual MTs, the experimental conditions were found to be well
separable and highly compatible with manual findings.

2.2. User Assisted Tracking

While the automated tracking delivers on increasing the
number of tracked MTs, it attempts to extract the most
trackableMTs regardless of their position. The central idea
of the previous method rests on enhancing the polymer mass
locations with a line filter for segmenting the MT body. This
method operates on local intensity values for their confor-
mance to a linear shape. Therefore, it is sensitive to frequent
variations of intensity caused by additive fluorescence in
crowded areas. The method discussed in this section, [10],
addresses this issue by using an exploratory tracing algo-
rithm which constraints a search space around the MT tip.

In essence, this approach formulates a deformable curve
using the process trellis, [4], of a hidden Markov model
(HMM). The transition matrix of the HMM encodes the
lateral deformation potential of the curve and works much
like active contours [12, 6]. The emission probability dis-
tributions are used to match the current image content with
the previous frame and the most probable path along the
trellis is returned as the new trace of the MT body. Arc-
emission HMMs were found to perform better than regular
(state-emission) HMMs for eliminating local jumps along
the MT body. The initial curve is extracted by tracing the
curve as detailed in [9]. The length changes are formulated
with specialized HMM states, which determine to extend or
stop the trace early. This algorithm consists of the following



steps:

• tracing the MT body on initial frame,
• forming a spatial model of the trace,
• deforming the model of the previous frame based on

current image observations.

This algorithm requires theO andT1 to extract the MT
body in the first frame. Given theO and T1, the trac-
ing algorithm explores an(α,−α) neighborhood ofT1 in
the opposite direction of the originO, Fig. 5, and stops
when explored pixels no longer satisfy the collected statis-
tics along the curve. Essentially, the exploration consists of
systematically examining the pixels within(α,−α) of the
line from O to T1 to determine the new direction for ex-
tension. While imposing a directional constraint the main
contribution of working within the(α,−α) neighborhood
is to provide computational savings in exploration. In other
words, it is possible to explore all directions starting form
T1 to capture sharp turns along the curve. But for MT bod-
ies such turns are biophysically impossible.

Figure 5. Example tracing from the originO towardsT1. Not
all exploration paths are shown for clarity. The final MT length is
computed along the curve rather than using the Euclidean distance.

Once the initial trace is complete a spatial model of the
MT body is constructed in the first frame. This model is
applied to the image content on the next frame to determine
the deformations along the MT body, and the model is up-
dated. The process is repeated over the frames of the video
to compute the entire MT body track.

From a functional point of view, this method requires
only the initialO andT1 to proceed with the tracking, while
the previous method requires tip positions to be computed
in all frames. WhileO andT1 could be estimated automati-
cally, it is possible for the user to provide these points. This
gives the user control over which MTs to track, adding to
the biological utility of tracking.

2.2.1 Evaluation of user assisted tracking

Example tracking results are shown in Fig.6. On 1374
traces, against the average of 4 human experts%89 of the
MT tips were within3 pixels of ground truth, with a mean
error of 4.13 pixels.

(a) (b) (c)

(d) (e) (f)

Figure 6. Example tracking results. Selected original frames are
shown in the top row, with corresponding tracking results shown
in the bottom row.

3. Statistical evaluation of dynamic events

In this section, we focus on evaluating dynamic charac-
teristics from the tracking data. Upon the completion of the
tracking procedure the MT lengths are plotted against time
for each MT, Fig.7. At this stage of the analysis, the oper-
ator segments the life history plot of each MT manually,
deciding the boundaries for growth or shortening events.
The rate of each segment of the life history plot is com-
pared against two thresholds to be classified as agrowth
or shortening. Segments that do not meet the thresholds are
classified asattenuation, signifying an uncertainty about the
segment. Then, the segments of the same type are joined to-
gether for making updynamic events, a consecutive stretch
of segments. The rationale behind this procedure is to clas-
sify an event correctly within the context of the neighboring
events in time. The final rate of an event is approximated
between the beginning and the ending point of that event in
time. Upon the completion of this segmentation, statistics
are calculated for each event type. Typical statistics consist
of average lengths and rates of growth and shortening as
well as the frequencies of transitioning between the types
of events. Finally, the dynamics characteristics of an agent
is described using these statistics.
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Figure 7. Life history plot of a MT. Dynamic events are labeled as
(g) growth, (s) shortening, and (a) attenuation.



Correct classification

Automated tracking 95.91%
Manual tracking 92.16%

Table 1. Correct classification rates for automatically and manu-
ally extracted MT tracks.

Event boundaries can be estimated using dynamic pro-
gramming. First, a cost function, such as the line-fitting er-
ror, is evaluated for all events, where an event is defined as
any stretch of consecutive temporal segments starting at all
time points. Then, a total cost of the segmentation is min-
imized for the entire life history. Rate or length thresholds
can be applied to individual events for hard classification
if necessary. Fig.7 shows an example of this segmenta-
tion method. While this procedure is sufficient enough for
automating the manual task, the collected statistics provide
limited information about the temporal content. For exam-
ple, it may be a hard problem to group similar event se-
quences.

As stated above, the analysis method does not consider
events as part of a temporal pattern. As an example, con-
sider the case of two hypothetical experimental conditions,
each of which exhibit the same average growth and short-
ening rates. While these average rates may be equal, it is
easy to realize that the underlying data may exhibit sub-
stantially discriminating information, possibly of high bio-
logical significance. For example, the transition frequencies
from smaller rates to larger ones may be different between
two experimental conditions, while scoring the same overall
average rate for both. Using higher order statistical models
may uncover such information.

Similar dynamics characteristics are known to be shared
between different experimental conditions. Conversely,
MTs within a cell exhibit different dynamic behavior pat-
terns. This is the expected aggregate behavior since various
MT groups perform different tasks. As an alternative analy-
sis method, mixtures of HMMs were used in [3] for group-
ing time series based on their potential for representing a
temporal pattern. Behavior patterns are established by clus-
tering individual MT tracks into behavior categories. Mix-
tures of models represent the dynamic behaviors exhibited
by an experimental condition. Individual MT tracks were
assigned to an experimental condition based on their prob-
abilities of being generated by the representative models.

This analysis method was tested on both automatically
and manually extracted MT tracks for the ability to sepa-
rate different experimental conditions. A total of 3068 au-
tomated tracks and 403 manual tracks were used. A maxi-
mum separation based on correct classification of a test set
of MT tracks are shown in Table1.

4. Conclusion

A straightforward approach to automate the MT dynam-
ics analysis would be to replace the manual steps with their
computational counterparts. To that end, a semi-automated
procedure would present the researcher with a familiar en-
vironment and some degree of control. An alternative is
to replace the entire analysis paradigm with computational
methods. Here, we presented an example of each approach
for the analysis of MT dynamic instability. The described
tools are available at [1].
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