
Duplicate Video Detection - Comparison of Proposed Distance
Function with Dynamic Time Warping and Dependence of

Detection Accuracy on Keyframe Selection

Anindya Sarkar1, Vishwakarma Singh2, Pratim Ghosh1, B. S. Manjunath1, Ambuj Singh2

1 Department of Electrical and Computer Engineering, University of California, Santa Barbara
2 Department of Computer Science, University of California, Santa Barbara

1 Problem Statement

The problem we are considering here is duplicate video detection. We have a database of N videos and we
store compact signatures, called fingerprints, for each of them. When a query video is presented, the system
first returns the top-K most closely matched videos. Then, a more detailed search is performed among the
top-K retrieved model videos to obtain the best match. Finally, a separate module is used to confirm whether
the best matched video is indeed a duplicate. A complete overview of our duplicate detection framework is
shown in Fig. 1. In this write-up, we focus on two aspects:

1. comparing our proposed distance measure (1) with the dynamic time warping (DTW) [2] distance
measure for duplicate detection,

2. studying the importance of keyframe selection for the duplicate detection task.

The database videos are referred to as “model” videos in this write-up.
The N model video signatures in the database are denoted by {Xi}N

i=1. On presenting a query video
signature Q, the aim is to find the K model video signatures that are nearest to Q. The notion of similarity
is with reference to a distance measure d(Xi, Q) (1). To simplify matters and improve runtime, a vector
quantizer (VQ) based approach is used, where the video signatures are VQ encoded and lookup table based
methods are used to make the search faster.

d(Xi, Q) =
M∑

k=1

{
min

1≤j≤Fi

‖Xi
j −Qk‖1

}
(1)

1

where ‖Xi
j −Qk‖1

refers to the L1 distance between Xi
j , the jth feature vector of Xi and Qk, the kth

feature vector of Q. For every vector in Q, the best match is obtained out of all the vectors in Xi and
d(Xi, Q) is the summation of the best matched distances.
Glossary of Notations

1. N : number of database videos

2. Vi : ith model video in the dataset

3. Vi∗ : best matched model video for a given query

4. p : dimension of the feature vector computed per video frame

5. Zi ∈ RTi×p : feature vector matrix of Vi, where Vi has Ti frames after temporal sub-sampling

6. Xi ∈ RFi×p : fingerprint of Vi, which has Fi keyframes

7. Xi
j : jth vector of video fingerprint Xi

8. U : size of the vector quantizer (VQ) codebook used to encode the model video and query video
signatures

9. Qorig ∈ RTQ×p : query signature created after sub-sampling, where TQ refers to the number of
sub-sampled query frames

10. Q ∈ RM×p : keyframe based signature of the query video, where M is the number of query keyframes

11. Ci : the ith VQ codevector

12. −→xi : VQ based signature of Vi

13. ~q : VQ based query signature

14. SXi
j

: VQ symbol index to which Xi
j is mapped

15. D ∈ RU×U : Inter VQ-codevector distance matrix

16. `: fractional query length = (number of query frames/number of frames for the actual source video)

17. K: the number of nearest neighbors (NN) returned by the first pass (coarse search) using VQ-based
signatures, where 1-NN for a certain video refers to the video itself

18. |E| : the cardinality of the set E

We present a short description of the signature creation process. After sub-sampling the ith model video
and the query video, we end up with the feature matrices Zi ∈ RTi×p and Qorig ∈ RTQ×p, respectively. Say,
we want to use only 5% of these frames to create the signatures, i.e. Fi = Ti.(5/100) and M = TQ.(5/100).

The keyframe selection has been experimented with in the following ways:

2

V1
V2
.
.
.

VN

Sub-sample
the decoded
video
frames

Cluster video
feature set Zi

for video Vi

VQ
design

based on
{X1,..,XN}

X1

X2

XN

F1

F2

FN

p

......

p

p

TQ

MQuery
Video

Sub-Sampling

VQ based
Pruned
Search

Return Top
K Neighbors

Naive Linear Search on Top
K Neighbors using Qorig

Return best
match Vi*

Offline Cost

Online Cost

Video
Database

Vector
Quantizer

Decide whether
the best match
is a duplicate

Feature
Extraction

Query
Frames

S

F1

Fi

FN

VQ Model Symbols

Query Symbols

Extract
features
for these
frames

Feature Set per
video

p

p

p

T1

T2

TN
ZN

Store the
cluster
centers, Xi as
video
fingerprint

Video Fingerprint

Compute
distance
matrices
based on

VQ
design

p

TQ

Qorig : Query
Features

SQ1 QM

......

......

......XS
1
i

Z1

Z2

S i
Fi

X

p

M

Signature: Q

Cluster Qorig and
store cluster centers

Figure 1: Block diagram of the proposed duplicate detection framework.

• performing k-means clustering on the feature vectors obtained after temporal sub-sampling (Zi) and
then choosing the cluster centers (Xi) as the keyframe vectors,

• choosing the keyframes by uniform sampling and

• choosing the keyframes randomly.

When we perform k-means based clustering on Zi (or Qorig), the cluster centers Xi (or Q) may not
correspond to features actually present in the signature. To simplify matters, we map the cluster centers
obtained after k-means on Zi (or Qorig) to the best matching vector in the original matrix. This is because
we want a feature vector in Xi (or Q) to correspond to a keyframe in Zi (or Qorig) - this can happen only
when a feature vector in Xi (or Q) is actually also present in Zi (or Qorig).

3

2 Use of VQ-encoded signatures

We develop an algorithm that uses VQ-based encoding on the signature feature vectors. Thus, the distance
between any two feature vectors reduces to an inter-symbol distance, after VQ-based encoding. By using a
lookup table of inter-VQ codevector distances, the L1 distance computation cost (e.g. ‖Xi

j −Qk‖1
) can be

avoided.
Using the features extracted from the database video frames, a vector quantizer of codebook size U is

constructed. Since each vector in a video signature can be mapped to one of U codevectors, the effective
video signature can be thought of as a U -dimensional vector, where the ith dimension denotes the fraction
of vectors in the original signature which get mapped to the ith codevector Ci.

We normalize all the VQ-based signatures. Let [q1, q2, · · · , qU] denote the normalized query video
signature −→q and [xi,1, xi,2, · · · , xi,U] denote the normalized model video signature −→xi for the ith video Vi.

qk = |{j : SQj = k, 1 ≤ j ≤ M}|/M (2)

xi,k = |{j : SXi
j

= k, 1 ≤ j ≤ Fi}|/Fi (3)

Generally, there is a high degree of redundancy among video frames; hence, many of them will get
mapped to the same VQ codevector and there will be many VQ codevectors which will have no represen-
tative (assuming a large enough U). Let {t1, t2, · · · , tNq} and {ni,1, ni,2, · · · , ni,Nxi

} denote the non-zero
dimensions in −→q and −→xi , respectively.

The distance between them can be expressed as:

dV Q(−→xi ,
−→q) =

Nq∑
k=1

qtk ×
{

min
1≤j≤Nxi

D(tk, ni,j)
}

(4)

where D(i, j) = ‖Ci − Cj‖1, 1 ≤ i, j ≤ U (5)

where D ∈ RU×U is the inter-VQ codevector distance matrix.
It can be easily shown that the distances in (1) and (4) are identical, apart from a constant scaling factor,

when each vector in (1) is represented by its corresponding VQ codevector.

d(Xi, Y) = M × dV Q(−→xi ,
−→q) (6)

3 An Introduction into Dynamic Time Warping

We present a brief introduction to dynamic time warping (DTW), based on material present in [2]. This is a
self-contained section and the notations used in this section are not to be confused with the notations in the
glossary. Let us consider two segments X and Y , of length Tx and Ty, respectively. They are represented
by the feature-vector sequences (x1, x2, . . . , xTx) and (y1, y2, . . . , yTy) where xi and yj are the ith and jth

feature vectors of X and Y , respectively.

4

If only linear time alignment (LTA) is used, the dissimilarity between X and Y is defined as:

DLTA(X ,Y) =
Tx∑

ix=1

d̂(ix, iy)

where iy =
Ty

Tx
ix

and ix and iy denote the time indices of X and Y , respectively. d̂(ix, iy) denotes the distance (according to
some distance metric) between the feature vectors corresponding to the ithx frame of X and the ithy frame of
Y .

A more general time alignment and normalization scheme involves the use of two warping functions,
φx and φy, which map the ix and iy axes (corresponding to X and Y , respectively) to a common time axis,
denoted by k, where both the sequences are warped to a sequence of length T .

ix = φx(k), k = 1, 2, . . . , T

iy = φy(k), k = 1, 2, . . . , T

Based on the choice of the warping paths φx(k) and φy(k) and the choice of a weighting sequence m(k)
which weights the various paths, the path normalized distance dφ(X ,Y) between S1 and S2 can now be
defined as follows, where φ is a set consisting of the time-warping functions, i.e. φ = (φx, φy):

Dφ(Tx, Ty) =
T∑

k=1

d̂(φx(k), φy(k))m(k)

d̂φ(X ,Y) = D(Tx, Ty)/Mφ

Dφ(Tx, Ty) is the accumulated distance while traveling from (1, 1) to (Tx, Ty) in the (ix, iy) grid along the
path given by the warping functions {φx(k), φy(k)}, d(φx(k), φy(k)) is the distance between the feature
vectors corresponding to the φx(k) and φy(k) - numbered frames of X and Y , respectively and Mφ is a path
normalization term, which makes dφ independent of the path lengths.

In [2], various sets of allowable moves are mentioned - of them, we have used Type I moves (Fig. 2) in
our experiments because it allows the warping path to take all possible paths (the only constraint being that
it will not go back along time) in the forward direction. Type II is provided for comparison (Fig. 2).

Based on the allowed moves, there can be a large number of paths from (1, 1) to (Tx, Ty). A dynamic
programming (DP) [1] based approach is used to find the best possible path out of all the available moves.
The optimal path will return the lowest accumulated distortion while moving from (1, 1) to (Tx, Ty) along

5

Figure 2: Allowable path specifications - Types I (upper) and II (lower)

any set of allowed paths.

D(Tx, Ty) = min
φ

Dφ(Tx, Ty)

= min
φx,φy

T∑
k=1

d̂(φx(k), φy(k))m(k)

dDTW (Tx, Ty) = D(Tx, Ty)/Mφ

where dDTW (Tx, Ty) is the normalized distance along the optimal path between X and Y , φx(T) = Tx and
φy(T) = Ty.

The constraints on the warping functions φx and φy are as follows:

1. Endpoint constraints: The warping functions should ensure that the optimal path starts from (1, 1)
and terminates at (Tx, Ty) in the (ix, iy) plane.

beginning point: φx(1) = 1, φy(1) = 1
ending point: φx(T) = Tx, φy(T) = Ty

2. Monotonicity conditions: In order to maintain the temporal continuity, the warping functions should
be monotonically increasing:

φx(k + 1) ≥ φx(k) φy(k + 1) ≥ φy(k)

6

3. Local continuity constraints: Normally, since we do not expect a huge change in the feature vector
from one frame to the next, the path should not change drastically between two points in the (ix, iy)
plane.

Based on the list of allowed paths, there are constraints imposed on |φx(k + 1)− φx(k)| and |φy(k +
1)−φy(k)|. For Type I paths, (φx(k+1)−φx(k)) ≤ 1 while for Type II paths, (φx(k+1)−φx(k)) ≤ 2
(the same applies for φy terms), as shown in Fig. 2 .

Let the optimum path P be a sequence of moves, each denoted by the corresponding displacements
along the ix and iy axes, respectively. Thus, P → {(p1, q1), (p2, q2), . . . , (pT , qT)}, implies a dis-
placement of pi along ix and qi along iy axes, respectively, for the kth time instant, where 1 ≤ k ≤ T .
For Type I paths, the possible values of (pi, qi) are (1,0), (1,1) and (0,1).

The constraints on the pi and qi terms are that the endpoint has to be reached at time k = T , which
implies

T∑
k=1

pk = Tx

T∑
k=1

qk = Ty

4. Global path constraints:
Based on the allowable paths for pi and qi terms, there are certain regions in the (ix, iy) plane which
cannot be reached by the optimal warping path.

If Qmax is defined as the maximum possible expansion in time warping, where

Qmax = max
`

[
T∑̀
i=1

p
(`)
i /

T∑̀
i=1

q
(`)
i

]
T` is the total number of moves in P` (as in Fig. 2) while ` is the index of the allowable path (=1,2 and
3 for Types I and II). Thus, T1, T2 and T3 equal 1,1,1 and 2,1,2 for Types I and II, respectively. Qmax

equals ∞ and 2, respectively, for Types I and II.

No time warping can be accomplished if (Tx−1) > Qmax(Ty−1) or (Ty−1) > Qmax(Tx−1). For
most of the other local continuity based paths, Qmax equals 2 - therefore, if the length of the longer
segment is more than twice the length of the shorter sequence, their distance cannot be computed in
the time-warping framework. To enable the matching path between two sequences be as generic as
possible (all possible moves in the forward direction are possible provided that the displacement is at
most 1 along each axis for every move), we choose the allowable paths (Type I instead of Type II)
that ensured a Qmax = ∞, thus ensuring that any two video sequences can be compared (without any
constraints on their lengths).

5. DTW computation
For DTW computation, we need to fix a set of allowable moves (we use Type I moves) that decide the
allowable φx(k) and φy(k) paths from a given point. Secondly, we decide upon the slope weighting
that fixes m(k) and the normalization factor Mφ.

7

We use Type (d) slope weighting [2]:

m(k) = φx(k)− φx(k − 1) + φy(k)− φy(k − 1)

Mφ =
T∑

k=1

m(k) = Tx + Ty

assuming that the two sequences X and Y are of length Tx and Ty, respectively.

Like other DP-based optimal path finding methods, the DTW algorithm has three parts:
1. Initialization:

D(1, 1) = d̂(1, 1)m(1)

2. Recursion:
For all points (ix, iy) which can be reached by the optimal warping path

D(ix, iy) = min
i′x,i′y

[D(i′x, i′y) + γ((i′x, i′y), (ix, iy))]

where γ((i′x, i′y), (ix, iy)) is defined as

γ((i′x, i′y), (ix, iy)) =
Ls∑
l=0

d̂(φx(T ′ − l), φy(T ′ − l))m(T ′ − l)

where D(ix, iy) is the accumulated distortion along the optimal DTW path from (1, 1) to (ix, iy), Ls

is the number of possible moves from (i′x, i′y) to (ix, iy) based on φx and φy, φx(T ′ − Ls) = i′x and
φy(T ′ − Ls) = i′y.

For the specific case of Type I paths, the recursion equations are as follows:

D(ix, iy) = min

D(ix − 1, iy) + d̂(ix, iy)
D(ix − 1, iy − 1) + 2d̂(ix, iy)
D(ix, iy − 1) + d̂(ix, iy)

 (7)

3. Termination:

dDTW (X ,Y) = D(Tx, Ty)/Mφ = D(Tx, Ty)/(Tx + Ty), for Type (d) slope weighting (8)

4 Computing DTW between Video Sequences with VQ-based Signatures

As denoted in the glossary, Qorig refers to the query signature obtained after sub-sampling the query frames
(before keyframe extraction). Let us denote Qorig by Qorig for ease of expression. Let the compact query

8

signature after keyframe extraction be represented by M frames {Qorig
a1 , Qorig

a2 , · · · , Qorig
aM } and the cor-

responding VQ indices are {S
Qorig

a1
,S

Qorig
a2

, · · · ,S
Qorig

aM
}, where a1 < a2 · · · < aM . We denote the ef-

fective VQ-based query signature computed using the keyframes (and with time-sequence maintained) as
−→e = [e1, e2, · · · , eM] where

time sequential query signature ek = S
Qorig

ak
, where Qorig

ak
= Qk, a1 < a2 · · · < aM , 1 ≤ k ≤ M (9)

For video Vi, let the model signature be represented by Fi frames {Zi
b1

, Zi
b2

, · · · , Zi
bFi
} and the cor-

responding VQ indices are {SZi
b1

,SZi
b2

, · · · ,SZi
bFi

}, where b1 < b2 · · · < bFi . Denoting the effective

VQ-based model signature of Vi computed using the keyframes (and with time-sequence maintained) as−→
f i = [f i

1, f
i
2, · · · , f i

Fi
] where

time sequential ith model signature f i
k = SZi

bk

, where Zi
bk

= Xi
k, b1 < b2 · · · < bFi , 1 ≤ k ≤ Fi (10)

The normalized query and model histogram based signatures −→q (2) and −→xi (3) can be computed from
−→e (9) and

−→
f i (10), respectively.

qk = |{j : ej = k, 1 ≤ j ≤ M}|/M
xi,k = |{j : f i

j = k, 1 ≤ j ≤ Fi}]/Fi

For the DTW distance, the sequence information is used. A thing to note here is that though the query
video is obtained as a time window extracted from the model video, the query signature is not computed
using all the frames that were originally in the query. We use a certain fraction of keyframes (5%) from
the query and model videos to construct the video signatures - therefore, all query keyframes may not match
with model keyframes, that are consecutive along time, along the DTW path. Even if all the query keyframes
do match, there may be some model keyframes along the DTW path which do not match well with the query
keyframes, which can increase the effective DTW distance. To overcome this problem, we only consider the
DTW distance between the query and the best matching part of the model signature. We refer to the total
DTW distance as d1

DTW and the distance between the query and the matching model part as d2
DTW .

The DTW path is computed as follows, using (7),

D(f i
(1:m), e(1:n)) = min

D(f i

(1:m−1), e(1:n)) + d̂(f i
m, en)

D(f i
(1:m−1), e(1:n−1)) + 2d̂(f i

m, en)
D(f i

(1:m), e(1:n−1)) + d̂(f i
m, en)

 (11)

where

f i
(1:m) = [f i

1, f
i
2, · · · , f i

m], e(1:n) = [e1, e2, · · · , en], and

d̂(f i
m, en) = D(f i

m, en) = ‖Cf i
m
− Cen‖1

9

x

y

1

s*= 3

e* = 7

3

2

3

4

5

2 4 5 6 7 8 9

P1
P2 P3

P4

P5

P6

P7 P8 P9

time indices of sequence fi

tim
e

in
di

ce
s

of
 s

eq
ue

nc
e

e

1

(a)

time indices of sequence fi

tim
e

in
di

ce
s

of
 s

eq
ue

nc
e

e

x

y

e*

s*

ie
∗
x m

n

is
∗
x

(ie
∗
y)

1(is
∗
y)

(b)

Figure 3: We assume here that the query is a subset of the ith model video Vi. (a) We obtain the DTW
path between the ith model and query signatures; a point on the grid (1, 3) denotes the distance between
the VQ codevectors corresponding to the symbols f i

1 and e3, i.e. D(f i
1, e3). The path needed to compute

d2
DTW consist of the points {P3, P4, · · · , P7} where s∗ (starting point index among all points in the total

DTW path) and e∗ (ending point index) are equal to 3 and 7, respectively. (b) We show a practical DTW
path when though the query video is a subset of the model video, the matching path is not fully diagonal
because both the query and model signatures consist of keyframes which are not necessarily consecutive
along time.

While finding the DTW path between
−→
f i and−→e , let there be Mφ points along the path: (i1x, i1y), (i

2
x, i2y), · · · , (iMφ

x , i
Mφ
y)

are the Mφ point pairs. We refer to the warping path between the query and the best matching model part as
“matching path”.

starting point in the matching path s∗ = arg max
k

ikx, where iky = 1 (12)

ending point in the matching path e∗ = arg min
k

ikx, where iky = M (13)

d1
DTW (

−→
f i ,−→e) =

D(Fi,M)
Fi + M

(14)

d2
DTW (

−→
f i ,−→e) =

D(ie
∗

x , ie
∗

y)−D(is
∗

x , is
∗

y)
ie∗x − is∗x + ie∗y − is∗y

(15)

where D(·, ·) is computed using (11).

In Fig. 3(a), we show the DTW path between two signatures:
−→
f i and −→e , along the x and y-axes, re-

spectively. It is seen that −→e is well-matched to a subset of
−→
f i , and the matching part is given by points

10

P3 (s∗ = 3) to P7 (e∗ = 7). Thus, the d1
DTW distance (total distance) between

−→
f i and −→e (14) is given by

the effective distance along the warping path defined by the points {P1, P2, · · · , P9}. The d2
DTW distance

(matching distance) between
−→
f i and−→e (15) is given by the effective distance along the warping path defined

by the points {P3, P4, · · · , P7}.
In Fig. 3(b), we show why the DTW distance is higher than the dV Q distance even when the query

video is obtained as a subset of the model video. The query signature is obtained after selecting certain
frames (keyframes) from the query video and then constructing the query signature using the feature vectors
corresponding to these keyframes. The reason why the DTW path is not completely diagonal (to get a
diagonal path, each and every query feature vector should be mapped to a certain model feature vector
where the best matched model vectors are consecutive along time) is that only a fraction (5%) of sub-
sampled frames is used for creating the video signature. To construct the DTW-based signatures and ensure
a smaller distance between the query and the corresponding model signature, we could have retained a larger
number of keyframes but that would result in more storage space for the video fingerprints. Computation

time wise, when the query signature (with symbols in time sequence) −→e and the model signature
−→
f i consist

of M and Fi symbols, respectively, both the dV Q (4) and d1
DTW (14) distances involve considering M.Fi

distance terms. Though d2
DTW considers only a smaller path as compared to d1

DTW , we need to compute
d1

DTW first which gives us the entire warping path in the Fi ×M grid, based on which we compute d2
DTW .

5 Experimental Results

For our experiments, we use 1200 model videos and 18 duplicates (using different image processing and
noise addition methods) are created per model video. Each query video is a duplicate of one and only one
model video. A detection error occurs when the best matching video does not correspond to the actual video
from which it was created. To construct the video fingerprints, the number of keyframes is 5% of the number
of frames in the feature matrix obtained after sub-sampling, i.e. Fi = Ti.(5/100) (for ith model video) and
M = TQ.(5/100) (for query).

Since the time information is discarded in our VQ-based signatures, our distance measure will give a
better match if the query is a collection of frames in the model video, which have been shuffled along time.
For fair comparison, we limit our experiments to queries which contain a certain time window of model
video frames - i.e. though the query is a noisy subset of the model video, the quetry frames are not further
distorted along time. Also, we shall be considering the same set of frames to constitute the video signatures,
for both the model and query videos, for both the distance measures - the frames will also be arranged along
time for creating the signatures to be compared for computing the DTW distance.

While comparing different distance measures for duplicate detection, we also consider dL1 which is the
L1 distance between the VQ-based signatures.

dL1(−→xi ,
−→q) =

U∑
k=1

|xi,k − qk| (16)

11

0 0.1 0.2 0.3 0.4 0.50.4

0.5

0.6

0.7

0.8

0.9

1

Fractional Query Length

D
et

ec
tio

n
A

cc
ur

ac
y

Detection Accuracy for different distance measures (K=1)

dVQ
dL1

d2
DTW

d1
DTW

(a)

0 0.1 0.2 0.3 0.4 0.50.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fractional Query Length
D

et
ec

tio
n

A
cc

ur
ac

y

Detection Accuracy for different distance measures (K=5)

dVQ
dL1

d2
DTW

d1
DTW

(b)

Figure 4: Variation of the detection accuracy with varying query lengths and for different distance measures
- the fractional query length (`) is varied from 0.025 to 0.50 and it is seen that in terms of detection accuracy,
dV Q > dL1 > d2

DTW > d1
DTW . The error is averaged over all the queries.

Table 1: Computation of detection accuracy using the dV Q distance for different keyframe selection
schemes, for K = 1

PPPPPPPPPmethod
`

0.025 0.05 0.10 0.15 0.20 0.30 0.40 0.50

k-means 0.792 0.823 0.867 0.903 0.924 0.938 0.955 0.958
uniform 0.783 0.804 0.844 0.879 0.900 0.919 0.941 0.944
random 0.737 0.758 0.824 0.868 0.893 0.921 0.933 0.935

In Fig. 4(a) and 4(b), we show the detection accuracy obtained using the VQ-based signatures using K =
1 and 5, in the K-NN setup. We observe that dV Q (4) results in the best detection accuracy followed by
dL1, d2

DTW and d1
DTW (in order of decreasing accuracy). Thus, using the modified DTW distance (d2

DTW)
results in better performance than the total DTW distance (d1

DTW), though both these distance functions
perform worse than our proposed distance function dV Q.

In Tables 1 and 2, we show the detection accuracy obtained using different methods of keyframe se-
lection (k-means based, uniform sampling and random selection) using dV Q as the distance measure. It is
observed that the detection accuracy obtained using k-means based cluster centers for keyframe features is
slightly higher than the accuracy obtained using “uniformly sampled” and “randomly selected” keyframes.
Thus, though intuitively the k-means based cluster centers should lead to properly representative signatures,
the results using random keyframes seem to be nearly the same.

12

Table 2: Computation of detection accuracy using the dV Q distance for different keyframe selection
schemes, for K = 5

PPPPPPPPPmethod
`

0.025 0.05 0.10 0.15 0.20 0.30 0.40 0.50

k-means 0.956 0.964 0.973 0.980 0.983 0.989 0.992 0.993
uniform 0.947 0.953 0.968 0.973 0.977 0.984 0.988 0.989
random 0.922 0.927 0.956 0.971 0.977 0.984 0.985 0.987

6 Distance Threshold based Approach for Duplicate Confirmation

After finding the best matched model video Vi∗ for a given query, the next problem is to determine if the
query is indeed a duplicate of the best matched model video. For that purpose, we propose a distance
threshold based approach.

The training phase to obtain the distance threshold involves finding the 1-NN and 2-NN distances for
1200 query videos, over various noise conditions and query lengths. The distance between the fingerprint of
the 1-NN video Vi∗ , Xi∗ , and the larger query signature Qorig, is computed using (1) and is normalized by
the query length TQ, so as to make the threshold independent of the query length. Thus, the effective 1-NN
distance equals {d(Xi∗ , Qorig)/TQ}. Since the same 1200 videos were considered as the model videos, the
1-NN always refers to a duplicate video and the 2-NN to a non-duplicate one. The distribution of 1-NN
and 2-NN distances is shown in Fig. 5(a) and (b), respectively. Ideally, the threshold δs should be such
that all the 1-NN (or 2-NN) distances are lesser (or greater) than it. If we equally weigh the probability
of false alarm PFA (wrongly classifying the 2-NN retrieval as a duplicate) and of missed detection PMD

(failing to classify the 1-NN retrieval as a duplicate), the threshold δs is chosen as 230 from Fig. 5(c). The
corresponding PFA and PMD values equal 0.07. Depending on whether the emphasis is on minimizing PFA

or PMD, δs can be decreased or increased, accordingly.
For verifying the effectiveness of the distance threshold, we repeat the duplicate detection experiments

on an unseen dataset of 1700 videos (≈ 75 hours of video), all of which are different from the model videos.
For each video, 18 duplicates are created using various image processing and noise addition operations.
Using a threshold δs of 230, 3% of the videos were classified as “duplicates” - for them, the 1-NN distance
is less than δs.

For those cases where the query-to-model distance is very close to the threshold δs, we use a registration-
based approach which attempts to register the query keyframes with the best matching model keyframes.
The registration method is computationally intensive but is more accurate in determining if the query is
indeed a duplicate of the retrieved candidate.

13

0 200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

0.06

(a) 1 NN Distance Distribution

distance value ->

0 200 400 600 800
0

0.01

0.02

0.03

0.04

(b) 2 NN Distance Distribution

distance value ->
0 200 400 600 800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance threshold ->

(c) Retrieval Performance vs Distance Threshold

False Alarm

Missed Detection

δs

Figure 5: Choosing a distance threshold to distinguish duplicates from non-duplicates, using distance mea-
sure d(·, ·) (1), where the selected threshold δs is obtained such that it minimizes both PFA and PMD

14

7 Uniqueness of VQ-based Video Signatures

The uniqueness of the histogram based VQ signatures is investigated here. Due to our distance function
formulation, the distance of a query video to two model videos (using (4)) will be the same if both the model
videos have the same non-zero indices in the VQ-based signatures. For our database of 38000 videos, the
percentage of video pairs (considering

(
38000

2

)
pairs) that have exactly the same set of non-zero indices is

3.2× 10−4%.
We also compute the probability that 2 videos V1 and V2 have the same set of non-zero indices [I1, I2, · · · , IL]

in their VQ-based signatures. As per notation introduced in the glossary, the kmeans-based signature for V1

and V2 are X1 ∈ RF1×p and X2 ∈ RF2×p, respectively. The corresponding VQ-based signatures are −→x1 and
−→x2, respectively. We define two probability terms pi and p(I1,··· ,IL) in (17) and (18), respectively.

pi = Prob(a video vector gets mapped to Ci, the ith VQ codevector) (17)

=
number of database frames that get mapped to Ci

number of database frames
p(I1,··· ,IL) = Prob(a video frame gets mapped to one of {I1, I2, · · · , IL}) (18)

= 1− Prob(video frame does not get mapped to one of {I1, I2, · · · , IL})

= 1−
L∏

i=1

Prob(frame does not get mapped to Ii)

= 1− (1− pI1)(1− pI2)...(1− pIL
)

We assume that all frames are uniformly distributed. Of the F1 vectors that constitute X1, the k-means
based signature for V1, we first assume that one vector gets mapped to each of {I1, I2, · · · , IL}. The re-
maining (F1−L) vectors can get mapped to any VQ index in the set {I1, I2, · · · , IL}. The probability pV1

(probability that the non-zero indices in −→x1, the VQ-based signature for video V1 obtained using F1 vectors,
are {I1, I2, · · · , IL}) is computed as follows:

Prob(non-zero indices in −→x1 are {I1, I2, · · · , IL}) =
(

F1

L

)
× (pI1 .pI2 ...pIL

)× (p(I1,··· ,IL))
F1−L (19)

where −→x1 is computed using the kmeans-based signature X1 ∈ RF1×p.

Similarly, the probability pV2 (probability that the non-zero indices in −→x2, the VQ-based signature for
video V2 obtained using F2 vectors, are {I1, I2, · · · , IL}) is computed as follows:

Prob(non-zero indices in −→x2 are {I1, I2, · · · , IL}) =
(

F2

L

)
× (pI1 .pI2 ...pIL

)× (p(I1,··· ,IL))
F2−L (20)

where −→x2 is computed using the kmeans-based signature X2 ∈ RF2×p.

Thus, we see that the probability depends on the set of indices where the video signatures match. To
obtain the highest possible probability value, when two videos have L identical non-zero dimensions in the

15

Table 3: pV1 (19) is computed for varying L, assuming F1 =25.

L pV1 L pV1 L pV1 L pV1 L pV1

1 2.65× 10−9 2 2.05× 10−5 3 1.90× 10−3 4 2.84× 10−2 5 1.08× 10−1

6 2.07× 10−1 7 2.31× 10−1 8 1.47× 10−1 9 6.62× 10−2 10 2.10× 10−2

11 4.90× 10−3 12 8.92× 10−4 13 1.32× 10−4 14 1.59× 10−5 15 1.55× 10−6

16 1.26× 10−7 17 8.44× 10−9 18 4.65× 10−10 19 2.09× 10−11 20 7.52× 10−13

VQ-based signature, we choose the L topmost probability values out of {pi}U
i=1. Based on the kmeans-

based signatures {Xi}N
i=1, we observe that the average number of vectors in the model signatures, F̄ , equals

25. Also, the average number of non-zero dimensions in the VQ-based model signatures L̄ is observed to
be equal to 18. We compute pV1 for L = 1, 2, . . . , L̄, assuming F1 = F̄ - as shown in Table 3. When two
VQ-based signatures −→x1 and −→x2 have the same non-zero dimensions and when F1 = F2, pV1 = pV2 , from
(19) and (20). Hence, the total collision probability of two signatures −→x1 and −→x2 having the same set of
non-zero dimensions {I1, I2, · · · , IL} equals pV1×pV2 =(pV1)

2, assuming F1 =F2.
This analysis is incomplete in the sense that we have not computed how likely the event, that a set of

L dimensions {I1, I2, · · · , IL} will appear as the non-zero VQ indices in the same video, is based on the
VQ-based signatures of the 38000 database videos - i.e. the probability of co-occurrence of a certain set
of VQ dimensions which can be empirically computed from the database signature statistics has not been
computed. After arranging the probability terms {pi}U

i=1 in descending order, let us assume that the re-
arranged sequence is pI∗1

, pI∗2
, pI∗3

, . . . , pI∗U
where pI∗1

≥ pI∗2
≥ pI∗3

≥ . . . pI∗U
. Thus, when we compute

pV1 assuming a set of L non-zero dimensions, we actually consider the set {I∗1 , I∗2 , · · · , I∗L}. We define
pdatabase
(I∗1 ,I∗2 ,··· ,I∗L) (21) which denotes the co-occurrence probability of a given set of VQ indices (I∗1 , I∗2 , · · · , I∗L),

while considering all the database video VQ-based signatures.

pdatabase
(I∗1 ,I∗2 ,··· ,I∗L) = Prob(a database video has all the elements in (I∗1 , I∗2 , · · · , I∗L) as non-zero indices) (21)

=
number of database videos which have (I∗1 , I∗2 , · · · , I∗L) as non-zero indices

number of database videos

Using (21), we find that pdatabase
(I∗1 ,I∗2 ,··· ,I∗L) equals 0.0082, 0.0068, 0.0011, 1.25 × 10−4, and 8.09 × 10−5,

for L = 1, 2, 3, 4 and 5, respectively. For L > 5, the probability value equals 0. Thus, though the three
highest values of pV1 are obtained for L = 6, 7 and 8 (Table 3), the corresponding L-tuples of VQ indices
({I∗1 , I∗2 , · · · , I∗L}) have not occurred together in any of the 38000 database videos.

8 VQ-M1 - Method 1 for Dataset Pruning for VQ-based Signatures

VQ-M1 uses a multi-pass approach for pruning. The motivating logic is that for a given query, the model
videos which are nearest to it are likely to have some or all of the non-zero dimensions, as the query signature
itself, as non-zero.

16

The storage costs involved with VQ-M1 are listed below.
• We store a proximity matrix P ∈ RU×U which stores the U nearest neighbors, in proper sequence, for

a certain VQ codevector. E.g. P(i, j) denotes the jth NN for the ith VQ codevector. For U = 8192(213),
the storage cost of P = U2.13 bits (each of the U2 terms represents an integer ∈ [0, 213 − 1] and hence, is
represented using 13 bits, giving a total storage cost of 109 MB).

• We also store U clusters {C(i)}U
i=1, where C(i) denotes the cluster which contains those model video

indices whose signatures have the ith dimension as non-zero. The storage cost for 8192 clusters containing
38000 videos in all is found to be equal to 6.3 MB.

C(i) = {j : xj,i > 0, 1 ≤ j ≤ N} (22)

We also maintain a distance matrix D′ ∈ RU×U which stores the NN distances, in ascending order,
for each VQ codevector. Here, D′(i, j) denotes the distance of the {P(i, j)}th codevector from the ith VQ
codevector, i.e. D′(i, j) = D(i, P(i, j)). We do not need to store D′ explicitly as it can be computed using
D and P. We now provide a list of symbols used in VQ-M1 (Algorithm 1) along with their definitions:

• Sj : the set of distinct model videos considered in the jth pass,
• G: the set of non-zero query dimensions, where G = {t1, t2, · · · , tNq},
• d∗j : the minimum of the distances of all non-zero query dimensions to their jth NN codevectors,

d∗j = min
tk∈G

D′(tk, j) (23)

• Aj : the set of distinct VQ indices which are encountered on considering the first j NN for all the
elements in G. Therefore, (Aj \ Aj−1) denotes the set of distinct (not seen in earlier passes) VQ indices
encountered in the jth pass, when we consider the jth NN of the elements in G.

We maintain an ascending priority queue L of size K, for the K-NN videos, which is updated after
every iteration. For the jth pass, we terminate the search for top-K NN if d∗j ≥ LK,2 (or if all the N model
videos have already been considered). The proof that we are assured of finding the top-K NN is shown in
Appendix 9. In the first pass, we consider the union of the clusters which correspond to the non-zero query
dimensions. We consider all the model videos from this union for distance computation. For the 1st pass,
d∗1 equals 0 and the second pass is almost always required. In the jth pass, we find the j-NN codevector of
the non-zero query dimensions and the new codevectors (not seen in the earlier passes) are noted. We obtain
the new model videos which have common non-zero dimensions with these newly encountered dimensions
and consider them for distance computation. If the terminating condition is satisfied at iteration j = J , the
sequence of model videos considered is given by {S1, S2, · · · , SJ−1}.

We find that the maximum number of iterations (J) needed to obtain all the K-NN for a given query
increases with both K and the fractional query length (`).

17

Algorithm 1 Algorithm for VQ-M1 - here, unique(E) returns the unique (without repeats) elements in E

Input: N model video signatures, −→xi ∈ RU , 1 ≤ i ≤ N
Input: the query signature ~q, and lookup matrices P and D′ (along with the lookup tables needed by the

distance computation method VQLS-A/B)
Output: Best sequence to search N videos for top-K NN and also top-K NN (model video indices)

1: Initialization: (1st pass)
2: G = {t1, t2, · · · , tNq}, the non-zero query dimensions
3: A1 = G, set of 1-NN of elements in G is G itself
4: S1 =

⋃
1≤i≤Nq

C(ti), set of model videos having at least 1 non-zero dimension from G

5: d∗1 = mintk∈G{D′(tk, 1)} = 0
6: We maintain an ascending priority queue L of length K, based on the elements in S1, where dV Q(−→xi ,

−→q)
is found using (4), if VQLS-A is being used.

7: End of 1st pass
8: for j = 2 to U do
9: d∗j = mintk∈G{D′(tk, j)}, minimum distance between non-zero query dimensions to their jth NN

10: if LK,2 ≤ d∗j or
∑j

k=1 |Sk| = N (all model videos have been considered) then
11: break;
12: end if
13: Bi = P(ti, j), 1 ≤ i ≤ Nq, B = set of VQ indices which are jth NN of elements in G
14: E = B \ Aj−1, E = unique(E), set of VQ indices that are jth NN of elements in G and were not

seen in earlier iterations
15: Sj =

⋃
1≤i≤|E| C(Ei)

16: Sj = Sj \
⋃

1≤i<j Si, set of all model videos having at least one element in E as a non-zero dimension
and these videos were not seen in earlier iterations

17: Aj = Aj−1 ∪ E, set of all VQ indices which belong to one of the top j-NN for elements in G
18: Update the priority queue L based on the elements in Sj

19: end for
20: return the sequences observed so far {S1, S2, · · · , SJ−1} (assuming that the search terminates at iter-

ation j = J) and top-K NN from the priority queue L

18

9 Proof that top-K NN in VQ-based signature space are returned for VQ-
M1 based pruning

The VQ-M1 algorithm along with the relevant notations have been explained in Sec. 8. The proof that we
are guaranteed to return the top-K NN through this pruned search is explained below.

Given a dataset of {−→xi}N
i=1 signatures, we present a lower bound of the minimum model-to-query dis-

tance, {min1≤i≤N dV Q(−→xi ,
−→q)}, found for all signatures in the dataset (24). Here, β(i, tk) denotes the best

matching dimension in −→xi for dimension tk.

min
i

dV Q(−→xi ,
−→q) = min

i

Nq∑
k=1

qtk × D(tk, β(i, tk)) ≥ min
i

Nq∑
k=1

qtk × {min
j

D(tj , β(i, tj))}

(using
Nq∑
k=1

qtk = 1) = min
i
{min

j
D(tj , β(i, tj))} (24)

Thus, the lower bound equals the smallest distance between a non-zero query dimension and the correspond-
ing best-matched non-zero model dimension (24).

If any video index in Sj , the sequence of model videos returned in the jth iteration, is a j′th NN of
an element in G (the set of non-zero query dimensions), where j′ < j, then that video would have been
encountered in the first j′ iterations and would not have been an element in Sj . Hence, the best match we
can expect for a VQ index in G among the VQ indices in model videos in Sj is a VQ index which is a jth NN
of an element in G.

We now show that the minimum model-to-query distance among all videos in Sj {mini∈Sj dV Q(−→xi ,
−→q)} ≥

d∗j . As shown earlier, the smallest “query dimension-to-best matched model dimension” distance is due to a
model dimension which is the jth NN of a certain non-zero query dimension. Thus, the best matched model
dimension for tk, β(i, tk), where i ∈ Sj , equals P(tk, j), where tk ∈ G.

min
i, i∈Sj

dV Q(−→xi ,
−→q) ≥ min

i, i∈Sj

{min
tk∈G

D(tk, best matching model dimension in −→xi for tk)}, from (24)

min
i, i∈Sj

{best matching model dimension in −→xi for tk} = P(tk, j), where tk ∈ G

∴ min
i, i∈Sj

dV Q(−→xi ,
−→q) ≥ min

i, i∈Sj

min
tk∈G

D(tk, P(tk, j)), and D(tk, P(tk, j)) = D′(tk, j)

Now, d∗j = min
tk∈G

D′(tk, j), as expressed before in (23)

∴ min
i, i∈Sj

dV Q(−→xi ,
−→q) ≥ d∗j (25)

When we consider videos in Sj , during the jth pass, { min
i, i∈Sj

dV Q(−→xi ,
−→q)} ≥ d∗j . If d∗j ≥ LK,2,

it is assured that { min
i, i∈Sj

dV Q(−→xi ,
−→q)} ≥ LK,2, using (25). Now, if for the jth pass, it is ensured that

19

{ min
i, i∈Sj

dV Q(−→xi ,
−→q)} ≥ LK,2, then is it guaranteed that for videos in the j′th pass (for j′ > j), { min

i, i∈S′
j

dV Q(−→xi ,
−→q)} ≥

LK,2? If yes, then the minimum model-to-query distance seen in later iterations will always be greater than
or equal to LK,2 and these models will never be among top-K candidates.

Explanation : ∵ the elements in D′ are sorted in ascending order along a row,
D′(tk, j) ≤ D′(tk, j′),∀tk ∈ G, j < j′,

∴ min
tk∈G

D′(tk, j) ≤ min
tk∈G

D′(tk, j′) ⇒ d∗j ≤ d∗j′ , using (23)

∴ LK,2 ≤ d∗j (given condition), d∗j ≤ d∗j′ , d∗j′ ≤ { min
i, i∈S′

j

dV Q(−→xi ,
−→q)}, using (25)

⇒ LK,2 ≤ { min
i, i∈S′

j

dV Q(−→xi ,
−→q)}

Hence, it is confirmed that if d∗j ≥ LK,2, we will not find a model video in any sequence Sj′ , where
j′ > j, with model-to-query distance less than LK,2.

References

[1] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, New Jersey, 1957.

[2] L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Prentice Hall Signal Processing
Series, Englewood Cliffs, New Jersey, 1993.

20

