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ABSTRACT

Recent advances in bio-molecular imaging have afforded bi-
ologists a more thorough understanding of cellular functions
in complex tissue structures. For example, high resolution
fluorescence images of the retina reveal details about tissue
restructuring during detachment experiments. Time sequence
imagery of microtubules provides insight into subcellular dy-
namics in response to cancer treatment drugs. However, tech-
nological progress is accompanied by a rapid proliferation
of image data. Traditional analysis methods, namely man-
ual measurements and qualitative assessments, become time
consuming and are often nonreproducible. Computer vision
tools can efficiently analyze these vast amounts of data with
promising results. This paper provides an overview of sev-
eral challenges faced in bioimage processing and our recent
progress in addressing these issues.

1. INTRODUCTION

While images are now a significant part of biology data, much
of the image processing and analysis are still being done man-
ually. This is partly attributed to the lack of robust image pro-
cessing methods for bioimage applications. Automated image
analysis methods not only help in reducing the manual labor
but also facilitate tasks that are otherwise not feasible, such as
mining large collections of images for quantitative features.

Typical steps in an automated analysis include extracting
features at the low level, modeling the spatio-temporal vari-
ations in these features, and mining the feature/model space
to discover interesting biological relationships. Each one of
these steps pose significant computational challenges. In the
context of microscope images, the low signal to noise ra-
tio poses additional problems. Generally, in order to make
progress in analysis of biological image data, there is a need
to develop automated and robust methods that are adaptive to
different imaging conditions.

In the following, we discuss our efforts at the Center for
Bio-Image Informatics in developing such robust tools. The
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Fig. 1. Mosaic of 8 confocal 3D images of retina stained with
TOPRO.

long term goal of our image informatics research is to facili-
tate quantitative analysis of bioimages and to develop a digi-
tal library wherein the users can browse through large bioim-
age collections, share their data, and perform computations
on these data. Our current focus is on two specific data sets:
1) immunofluorescent images of retina cross sections and 2)
time sequence imagery of microtubule dynamics. However,
the methods and tools being developed are applicable to a
broader range of images.

In the following, we briefly describe our recent work on
automated registration (Section 2), segmentation and classifi-
cation (Section 3), and tracking and modeling of microtubule
dynamics (Section 4).

2. REGISTRATION AND ENHANCEMENT

Automated image registration is an important component in
many bio-molecular image applications – from creating large
field-of-view images to detecting and tracking changes. We
developed a robust toolset for this task that is fully automated
and easy to use. The basic problem of computing the corre-
spondence between two or more images is achieved by a com-
bination of feature extraction methods using condition num-
ber theory [1] and a RANSAC method for efficient pruning
of candidate feature points [2]. Fig. 1 shows the mosaic of
8 confocal 3D cross section images of a retina stained with
TOPRO.

The seamless mosaicking technique is also used in a new
local image enhancement technique [3], which independently
enhances image tiles before mosaicking them back together.
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Fig. 2. (a) Original retina image. (b) Enhanced image.

This enhancement technique allows fast and accurate high dy-
namic range compression for display and correction of un-
even intensities. Fig. 2 shows the spatial enhancement of a
retinal image. For volume data, images can also be enhanced
in the z-direction. Similarly this technique can be applied
to time sequences of fluorescence images, e.g. microtubule
videos where intensities are constantly diminishing due to
photo bleaching.

3. SEGMENTATION AND CLASSIFICATION

Quantifying changes in morphological features or protein ex-
pressions is an important task. For example, researchers are
interested in quantifying the redistribution of various proteins
present before and after retinal detachment. In this context,
we work extensively with immunofluorescence images of the
retina captured during several stages of detachment and reat-
tachment experiments. Fig. 3 shows example images of retina
cross sections labeled with rod opsin antibody. The localiza-
tion, intensity level, and spatial pattern of rod opsin protein
expression are several essential features necessary to analyze
this image set and must be reliably extracted.

To extract these features, we look at the intensity distribu-
tion around a neighborhood of each pixel. We represent these
distributions by their means and standard deviations. Then
by applying a recursive bi-partitioning using k-means cluster-
ing, protein distributions can be classified into k levels. Fig.
4 shows classification of protein distributions into four levels
on two channels of a retina image. These quantized distribu-
tions of protein expressions are useful in modeling the retinal
detachment process.

We also use texture features to characterize protein distri-
butions. Our texture features are based upon Gabor filtering
[4] and codeword creation [5]. Afterwards, each pixel is as-
signed a texture label, and then a histogram of pixel labels
for the entire image is computed. These histograms can be
thought of as high-dimensional feature vectors for the corre-
sponding images. As an example, we look at the distributions
of Glial Fibrillary Acid Protein (GFAP) from images of nor-
mal retinas and those after 1 day of detachment, 3 days of
detachment, and 3 days of detachment followed by 28 days
of reattachment. For visualization simplicity, we project the
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Fig. 3. Confocal images of retinas labeled with antibody to
rod opsin (red). (A) Normal retina. (B) 3-day detached retina.
(C) 7-day detached retina. (D) 28-day detached retina. (Best
viewed in color)

data points from the original high dimensional feature space
(we use histograms with 20 bins/clusters) to a two dimen-
sional space spanned by the first two principle components
(PC1 and PC2) and plot the distribution. Fig.5 shows that our
feature vector and pixel clustering techniques provide good
representation of protein distribution during various experi-
mental stages. These quantitative results are helpful in eval-
uating how successfully the reattached tissue mimics the nor-
mal retina.

All vertebrate retinas are composed of three layers of nerve
cell bodies and two layers of synapses (Fig. 3). Each layer has
a different structure which consists of different cell bodies or
synapses. The layer information is an important feature used
to locate cells of interest and to measure the retinal function
after an injury such as detachment. This information is also
useful for narrowing search regions in a database and visual-
izing the query results, e.g. a query can focus on a particular
layer. We developed a method for automatically assigning
labels to immunofluorescence images of feline retina and a
similarity search engine for these images based on several dif-
ferent criteria. In automatic layer classification, we found that
Gabor texture feature is useful for coarse label assignments,
and we are able to achieve about 76% accuracy in correctly
labeling the different layers.

Nuclei detection is another important problem in bio-image
analysis. For example, the number and density of photore-
ceptor nuclei within the outer nuclear layer (ONL) is directly
correlated to visual function [6]. Images of nuclei usually
show a slice of the nuclei in which the intensity distribution



Fig. 4. Grouping of protein distributions into four levels.
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Fig. 5. First two principal components of texture features for
GFAP under various experimental conditions. After 1 day of
detachment, the features slightly depart from those under nor-
mal condition. After 3 days of detachment, texture features
show clear distinction. Following reattachment, the GFAP
distribution moves back toward the normal state.

of a nucleus can be modeled as a cylinder. We designed a
nuclei detector that automatically detects cell bodies within
the ONL. To evaluate the performance of the nuclei detector,
the result is compared with the ground truth from 41 images.
The automated nuclei detector approximates the number de-
termined by manual counting with an average error of ∼4%.
Fig. 6 shows photoreceptor nuclei detection result in a con-
focal image of a normal retina. Refer to [7] for more details.

In addition to providing the cell count within the ONL,
the detected nuclei are used to obtain measurements such as
layer thickness and cell density profiles along the ONL. The
ONL region is approximated using morphological operators
based on the detected nuclei locations and photoreceptor size.
A skeletal backbone or median of the resulting region is gen-
erated and used as a reference frame for subsequent measure-
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Fig. 6. Cell detection result, (a) detected cell centers, (b) mag-
nified rectangular inset in (a).

Fig. 7. ONL region approximated from detected nuclei and
the thickness and density measurement at one backbone loca-
tion.

ments. Then, the thickness profile is calculated as the width
of the ONL along each backbone location. Similarly, the den-
sity profile is computed as the number nuclei inside a region
surrounding each backbone location (highlighted region in
Fig. 7) divided by the area of that region. Fig. 7 shows an
example of the thickness and density analysis. Refer to [7]
for more details.

4. OBJECT DETECTION AND TRACKING

The study of microtubule (MT) dynamics provides another
interesting class of image sequence data analysis. MTs are
cylindrical structures constituting one of the main compo-
nents of the cytoskeleton [8]. MTs are highly dynamic poly-
mers in the sense that their ends can be polymerizing or de-
polymerizing depending on need–a phenomenon called dy-
namic instability. This will have an effect of growing or short-
ening of the MTs. Currently, the imaging of MTs in a cell
is carried out by high-resolution time-lapse microscopy lead-
ing to a time stack of fluorescence images. The dynamic
behavior of MTs is affected by many factors, and abnormal
dynamic behavior of the MTs can lead to cancer and neuro-
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Fig. 8. a) First frame of a microtubule video. b) Detected
microtubules.

degenerative diseases such as Alzheimer. To quantify the dy-
namic behavior of the MTs under different test subjects, biol-
ogists manually track the MT ends and generate life history
plots of tube lengths for a relatively small number of MTs per
stack–typically 5 to 10. Manual tracking is both laborious and
subjective, and results are difficult to replicate.

To improve MT analysis, we developed automated meth-
ods for the detection and tracking of MTs in order to estimate
dynamic parameters. A filtering-based approach is used to
detect the MT polymer mass. Oriented second derivative of
Gaussian kernels matched to MT sizes and orientations re-
veal the MT structure while eliminating background noise, as
shown in Fig. 8. Based on this MT binary mask, a morpho-
logical approach is then used to detect MT tips that are used in
subsequent tracking. Using the detected tips in MT video, we
developed a fully automated MT tip tracking method robust
against occlusions and intersections. By solving the tracking
problem for all the MTs and for the full time duration of the
video simultaneously, we are able to resolve tracking conflicts
and to overcome microtubule tip occlusion and mis-detection.
Details of this approach are described in [9].

The MT detection and tracking results are then used in
modeling the overall dynamic behavior of these MTs under
various experimental conditions. For example, Hidden Markov
Models can be used to obtain better insights into how exper-
imental conditions affect the growth and shortening associ-
ated with the MTs, and data mining methods can be applied
to identify frequent spatio-temporal patterns associated with
the MT dynamics. For more details, we refer to [9].

5. CONCLUSION

Automated analysis of biological images is a very challenging
task. Successful solutions require robust image processing,
computer vision and data discovery tools that are designed
with the understanding of the biological questions at hand.
In this paper, we gave an overview of our recent work on
analyzing retinal images and microtubule image sequences.
We have developed an initial database of immunofluorescence
images of vertebrate retina and microtubule videos [10] (see
also http://www.bioimage.ucsb.edu/). The database provides

methods for querying the raw images and the accompany-
ing metadata and for combining the images with features for
content-based retrieval and data mining. The long term vision
of our digital library project is to create robust information
processing methods for automated analysis of large collec-
tions of biomolecular image data that will advance our under-
standing of how cells respond to stress, injury, aging, disease,
and treatment.
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