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ABSTRACT
We present an efficient world-scale system for providing au-
tomatic annotation on collections of geo-referenced photos.
As a user uploads a photograph a place of origin is estimated
from visual features which the user can refine. Once the cor-
rect location is provided, tags are suggested based on geo-
graphic and image similarity retrieved from a large database
of 1.2 million images crawled from Flickr. The system ef-
fectively mines geographically relevant terms and ranks po-
tential suggestion terms by their posterior probability given
observed visual and geocoordinate features. A series of ex-
periments analyzes the geocoordinate prediction accuracy
and precision-recall metric of tags suggestions based on in-
formation retrieval techniques. The system is novel in that it
fuses geographic and visual information to provide annota-
tions for uploaded photographs taken anywhere in the world
in a matter of seconds.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Design, Experimentation, Theory

1. INTRODUCTION
The problem of image annotation has received significant

attention in recent years. With the coming pervasiveness
of GPS-enabled camera devices, further metadata to inform
annotation decisions is becoming available. How to effec-
tively utilize this information on a world-wide scale given
computation time constraints has yet to be demonstrated.
Freely-offered community image repositories, such as Flickr
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Figure 1: System diagram. First, user uploads a
photo. A geotag is predicted using only the visual
content of the photo. Then the user selects the ac-
tual location for the geotag. A similar set of images
is identified that are close to the visual content and
geotag of the upload. The system mines the similar
set of photos for geographically relevant annotations
and suggests them to the user. The user can then
select those which it wants to apply to the photo.

and Picasa, offer a ripe base of knowledge. As of February
2009 there were more than 100 million geotagged images in
Flickr. Given such a large amount of data it is tempting to
determine the extent to which signal can be mined given the
often noisy annotations present in the form of tags. This pa-
per presents a system which effectively suggests tags using
geocoordinates to inform the annotation decision process.

A system flow diagram is shown in Figure 1. The user can
either upload a photo or supply a URL for a web image. Us-
ing quickly extracted visual features, a geolocation estimate
is made for the photo to aid the user in placing it on a map.
The user adjusts a map provided by the Google API centered
at the system’s location estimate in order to correctly place
the origin. Once the user has done this, the system offers
relevant annotations predicted by ranking estimated poste-
rior probabilities derived from the geocoordinate and visual
features of the 1.2 million global images in the database. Fi-
nally, the user can choose tags so the annotated image can
be added to a collection.

The paper will proceed by reviewing relevant work in an-



notation and online media communities in the next section.
Section 3 provides details about how the data was crawled
and features were extracted. The algorithm for predicting
geocoordinates is in Section 4, and the the rubric for anno-
tating a geotagged photo follows in Section 5. Experiments
on these algorithms and conclusions wrap up the paper in
Sections 6 and 7.

2. RELATED WORK
This paper addresses the problem of multimedia annota-

tion of images driven by leveraging online community-based
data. Therefore, principles from research on collaborative
tagging and social media sites, such as YouTube, Flickr, and
other multimedia repositories, motivate our work.

While extensive research has been done on the annota-
tion problem [1], [2], most computer vision systems employ
descriptors derived from image content which treat annota-
tions as a detection problem. The usefulness of such meth-
ods can be limited by difficulties presented by the cluttered
natural scenes often found in tourist photos. Other meth-
ods have approached the image analysis problem by working
with large sets of photos and considering geographical meta-
data. Notable works have included event and place identi-
fication [3], extraction of canonical landmark views [4], and
geocoordinate prediction from a singular image [5].

Directly relevant to our aim to use geo-references to infer
labels, Joshi and Luo have presented work that quantifies
the probability of a particular activity or event that have
a relevant geographic footprint (i.e., events such as “hiking”
but not “party”) by learning the likelihood of the event con-
ditional on geotags, text tags, and visual features [6]. Their
experiments on a Flickr dataset, from which noisy data has
been manually removed, show that fusion of geographic and
visual information can improve results for classification of
geotagged photos in some cases.

In contrast to typical annotation systems based on com-
puter vision models, our system does not rely on learning
particular vocabulary terms. It is therefore scalable to any
dictionary size. It is also the only work to our knowledge
which specifically addresses the problem of efficiently tag-
ging images on a worldwide scale. The technique of apply-
ing tag propagation by mining large datasets to annotate is
related to work in image annotation by mining [7] as well as
with videos [8].

Previous work by the authors serves as a proof of con-
cept for such a system [9]. In that work, annotations are
derived from image similarities constrained to a geographic
radius, and a comparison of the local frequency of terms to
their global frequency is used to weigh terms that occur fre-
quently in a local area. The local area in [9] is defined as
a box bounded by a set of handpicked geographic coordi-
nates, and the system is only tested for two general areas,
“Los Angeles” and “Southern California.” This paper refor-
mulates the same problem on a worldwide scale and explores
the effect of dataset density on the results. The contribu-
tions of this paper are fourfold. This work:

• extends the concept of georelevant term propagation
to a worldwide database.

• offers a method for choosing smartly which annota-
tions of geotagged photos have visual relevances and
for effectively combining them with geography-based
annotations.

• formulates the annotation decisions in a Bayesian frame-
work of maximizing posterior annotation probabilities
given a geographic and visual feature space.

• analyzes the ability of basic features to predict geolo-
cation using the method in [5] with real-time system
constraints.

3. DATA CRAWL AND FEATURE EXTRAC-
TION

In order to learn and test an annotation system for geo-
tagged photos, we first crawled 1.75 million georeferenced
images using the Flickr API and the methodology from [5]
covering the globe. Of the 1.75 million images, we were able
to retain and extract features for 1.2 million images found
to be of suitable resolution and aspect ratio. Additionally,
for each image we retrieve the following metadata: owner
id, Flickr id, time taken, time of upload, title, tags, latitude,
longitude, geotag accuracy as given by zoom level of map
when geographically annotated, and public license informa-
tion.

We employ the following five types of visual features ex-
tracted from each photo:

Edge Histogram Descriptor: The EHD is an 80-
dimensional feature consisting of histograms of gradient ori-
entations computed from the image tiled in a 4x4 grid, as
described in the MPEG-7 standard [10]. Each histogram
contains 5 bins and consists of the magnitude response of a
filter.

Homogeneous Texture Descriptor: The HTD fea-
ture captures the statistics (mean, variance) computed across
the image from the response of a bank of 24 oriented Gabor
filters [10]. The resulting descriptor has 48 dimensions.

Color Layout Descriptor: The CLD is characterized
by an 18-dimensional descriptor, consisting of three 6-dimensional
coefficients from the DCT of each color channel in YCbCr
space [10].

Gist: The GIST descriptor describes the spatial layout
of an image using global features derived from the spatial
envelope of an image. It is particularly powerful in scene
categorization. The final descriptor is 512-dimensional [11].

Sift Signature: The SIFT feature represents the SIFT
descriptors [12] extracted at 5000 random keypoints [13] and
pushed through a vocabulary tree with 4 levels and a branch-
ing factor of 10, as advanced by Nister and Stewenius [14].

The MPEG-7 descriptors (EHD, HTD, CLD) are extracted
using slightly altered code available from [10]. We employ a
C implementation of the code provided by Torralba [15] for
GIST extraction, and a modification of the code provided
by Vedaldi [16] for SIFT signature extraction.

4. ESTIMATING GEOLOCATION
In order to provide geographically relevant tag sugges-

tions, we first need to know the location at which a pho-
tograph was taken. Although some photographs contain
this information embedded as metadata in EXIF format gar-
nered via GPS device or cell tower triangulation, this infor-
mation is still not available in the majority of cases. Since a
user can rarely be expected to know the latitude and longi-
tude coordinates directly, we provide a map interface from
Google to allow placing of the photo. Many of the georef-
erenced images in Flickr were placed using a similar map
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Figure 2: Performance of geolocation estimation
from a single image using the different features de-
scribed in Section 3. Note that using only GIST
performs nearly as well as using a voting method to
combine all features.

interface. As an initial estimate of where the photograph
was taken we employ a simple nearest neighbor scheme to
infer a location as detailed in the IM2GPS work by Hays
and Efros [5]. Essentially, a geographic estimate is made by
using the coordinates associated with the nearest neighbor
in feature space over the 1.2 million crawled images.

Figure 2 shows the results for first nearest neighbor run
over our 1.2 million images on the query set provided in [5]
and from a set of 230 random images selected in a simi-
lar manner. Photos by the same user were removed from
the dataset. The figure shows estimation results using the
five employed features separately, and two methods for fus-
ing features: linear sum on normalized feature similarities
and voting. Feature similarity was computed using L1 dis-
tance for all cases. For each separate feature, the mean and
standard deviation of the distribution of distances between
25,000 random images was calculated in order to normalize
the feature distances to a standard Gaussian. The linear
sum score was then computed on the normalized feature
distances. A Borda voting scheme ranked candidate im-
ages in the top 120 nearest neighbors for each feature as∑
f 120− r(f) + 1 where r is the rank of f .
Out of the features used, it is observed that the SIFT sig-

nature and the GIST are the most effective. It is not surpris-
ing to see SIFT perform well for this retrieval task, although
it is relatively expensive to compute. The color layout de-
scriptor (CLD) proved surprisingly ineffective when com-
pared with previous reported success with color histograms.
This is perhaps due to its reliance on positioning of colors
within the image. Our best method, a voting scheme to
combine features, produced an estimate within 200 kilome-
ters 5.9% of the time. The authors [5] report approximately
9% performance for a dataset with 1.2 million images. We
believe the discrepancy comes from using a set of features
not as effective overall for this task.

Since GIST performs well and has a modest computation
cost (on the order of 1 second) we select this feature for
world-scale geolocation estimation. Exact nearest neighbor
estimation would require a linear scan over 1.2 million im-
ages, and since this is too time consuming we explore the

Figure 3: Twenty ordered tags shown to demon-
strate tag frequency differences between Los Ange-
les region and globally. Tags such as “getty,”“cars,”
“freeway,” and “palm” with a higher normalized fre-
quency in Los Angeles are more applicable to the
region.

effects of partitioning the dataset using K-means clustering
in Section 6.1.

5. IMAGE ANNOTATION
We note that the vocabulary used to describe photos is

biased by the geographic region associated with the photo.
To motivate this assumption, Figure 3 compares unique tag
user frequencies for a set of tags crawled from Flickr in an
area restricted to Los Angeles and a set of tags crawled glob-
ally. Examples of tags with high frequency in LA but lower
global frequency are words such as “cars,” “freeway,” and
“palm.” We use the premise of a geographic bias in the tag
distribution as a method for reranking tag suggestions in a
way that reflects the local spirit of a place and improves the
relevancy of top annotations. Suggestions may be especially
useful for tourists as a quick way to annotate their vacation
photos with distinctive labels. While previous work utilized
tag distributions in a geographic area in order to find rep-
resentative tags for visualization and knowledge extraction
[17], we extend the idea by framing the problem in terms of
optimal Bayesian Maximum A Posteriori (MAP) probability
estimation for a set a tag candidates.

The image is described by a set of visual feature primi-
tives, described in Section 3, which we will call x, and geo-
graphic information g indicating the location that the photo
was taken. Thus, for each tag b we can derive a probability
that the tag b is applicable to the image as

p(b|x, g) =
p(b, x, g)

p(x, g)
=

p(x, g|b)p(b)

p(x, g)
(1)

Several methods exist for calculating the posterior p(b|x, g).
We prefer non-parametric techniques which extend flexibil-
ity by allowing us to avoid expensive model calculations.
Density estimation using k-nearest neighbors allows a direct
calculation of the posterior using a fixed number of clos-
est data points rather than by searching over a fixed volume
[18]. We adopt kNN density estimation to calculate the pos-
terior imposing a kernel on each candidate within the search
space. This method is described in the next section.



5.1 Non-Parametric kNN Density Estimation
Non-parametric density estimation using k-Nearest Neigh-

bors (kNN) provides a way to estimate the posterior p(b|x, g)
and has been used in segmentation [18], video motion clas-
sification [19], and object classification in images [20]. We
can reformulate the posterior as:

p(b|x, g) =
p(b, x, g)

p(x, g)
=

p(b, x, g)

p(x, g|b) + p(x, g|b̄)
(2)

Simple kNN algorithms treat the k-nearest neighbors identi-
cally and derive a probability from the number of kNN that

are of class b, for instance, p(b|x, g) =
∑k
i=1 Ib(Xi)

k
where Xi

is the ith closest image to (x, g) and Ib(Xi) is an indica-
tor function denoting whether image Xi is of class b. More
sophisticated algorithms apply a penalty, parameterized by
cost function K, for the kth-nearest neighbor’s distance from
the given parameters x and g, leading to a formulation

p(b|x, g) =

∑k
i=1 Ib(Xi)K(x, Xi)∑k

i=1 K(x, Xi)
(3)

K(x, Xi) is often formulated as K(x−Xi
h

) where h is a band-
width or smoothing parameter.

Our algorithm first employs a rectangular window, Kg =
Iĝ(Xi), whose size is a function of dataset density, around
g indicating whether Xi is within a certain distance of g.
The geographic region of influence, ĝ, is determined by the
quadtree described in Section 5.2. A Gaussian with mean
zero and unit variance is another commonly used kernel,

and we use a Gaussian kernel, Kx(x, Xi) = 1√
2πh

e−
(x−Xi)

2

2h

around the visual feature space x to apply a contribution to
the density estimate which drops with the distance between
x and Xi. We formulate the multivariate Gaussian for each
feature isotropically, denoted as K(x) =

∏d
j=i K(xj) if x =

[x1, ..., xd]
T . This leads to K(x) =

∏d
j=1

1√
2πhj

e
−
x2j
2hj , and

finally, the formulation becomes:

p(b|x, g) =

∑k
i=1 Ib(Xi)Iĝ(Xi)

∏d
j=1

1√
2πhj

e
−

(xj−Xi,j)
2

2hj

∑k
i=1 Iĝ(Xi)

∏d
j=1

1√
2πhj

e
−

(xj−Xi,j)2

2hj

(4)
We choose the bandwidth parameters, hj , as uniform over

each dimension per feature after normalizing the feature
dimensions according to their standard deviation. We at-
tempted to learn optimal h per feature by employing gradi-
ent descent designed to move in a direction that minimized
the tag selection error on a held-out validation set. However,
we did not see much difference in the various local maxima
that resulted from different starting conditions. The actual
values of h used were 4.5 for the EHD, 6.0 for the HTD, 12.0
for the GIST, 2.35 for the CLD, and 18.2 for SIFT signature.
Smoothing was proportional to feature dimensionality.

5.2 Regional Representation Using a Quadtree
In order to efficiently retrieve the image objects consider-

ing their global distribution in world coordinates we employ
a quadtree. A quadtree is a data structure formed by re-
cursively dividing data into four regions until a stopping
condition is met. A quadtree adapts to the source data,
growing in areas where the data is rich and terminating

where data is sparse. Quadtrees have been used previously
for watermarking [21] and object recognition through inex-
act image matching [22]. Wu et al. present a system that
performs content-based image retrieval by searching an up-
dating quadtree that effectively represents segmented region
features [23]. Grady and Schwartz use a quadtree to seg-
ment medical images [24]. In most of these works, quadtree
decomposition is used for sub-image definition.

We build a quadtree on the worldwide image database
of 1.2 million geotagged Flickr images, using the geocoordi-
nate tags for branching. The quadtree is grown by branch-
ing a central node into four equal-sized geographic quad-
rants until a stopping condition is met. We specified a
minimum-support level of 100 images as the stopping condi-
tion: if a node contains fewer than 100 images with unique
(user, latitude, longitude) triples, subdivision stops. Each
of the leaf nodes, then, represents a space that is inversely
proportional to the density of photos taken in that area. For
popular geographic locations (e.g., New York), the leaf node
has a small geographic footprint, while for less popular loca-
tions (e.g., parts of Africa), the geographic footprint of the
leaf node is large. Each of these terminal nodes is considered
to have enough images to characterize the space robustly in
the presence of noisy geo- and text-tagging that results from
use of voluntary user content. The geotag, ĝ, used in this
paper refers to the region covered by the terminal node that
contains g, and represents a discretization of a previously
continuous quantity.

The algorithm for posterior calculation using kNN density
estimation is provided below:

Input: a query image Q

1. Extract image features x for Q

2. Identify the appropriate quadtree node and geotag
ĝ for Q

3. Collect the set of images I that share ĝ

4. Collect the set of tags B associated with I, and com-
pute over each feature f and each tag tag b,

pf (b|x, g) =

∑k
i=1 Ib(Xi)Iĝ(Xi)

∏d
j=1

1√
2πhj

e
−

(xj−Xi,j)
2

2hj

∑k
i=1

∏d
j=1

1√
2πhj

e
−

(xj−Xi,j)2
2hj

5. For each b ∈ B, compute p(b|x, g) =
∏5
f=1 pf (b|x, g)

Output: a list of tag scores

5.3 Baseline Methods
We will compute two baseline methods for assessing the

quality of annotation suggestions. A visual baseline will em-
ploy content based analysis alone and a geographic baseline
will employ the prior distribution of tags present in the node
specified by ĝ.

5.3.1 Visual Baseline
The visual baseline assumes that the tags can be predicted



by visuals alone. This formulation reduces to:

p(b|x) =
p(b, x)

p(x)
=

∑k
i=1 Ib(Xi)

∏d
j=1

1√
2πhj

e
−

(xj−Xi,j)
2

2hj

∑k
i=1

∏d
j=1

1√
2πhj

e
−

(xj−Xi,j)2

2hj

(5)
The visual baseline amounts to a tag suggestion agent that is
ignorant of the image’s geotag. It thus reduces the problem
to the standard image annotation approach.

5.3.2 Geographic Baseline
This baseline assumes that the tags can be predicted by

geography alone. This formulation reduces to:

p(b|g) =
p(b, g)

p(g)
(6)

This formulation amounts to offering tag suggestions ranked
by their prior for an area. While such an algorithm provides
mainly place names, common objects of photographic inter-
est can be well represented.

5.4 Smart Fusion
As the results from Joshi and Luo indicate, a fundamental

problem in annotation of geotagged images is that some tags
are relevant to visual features (e.g., sunset, beach), while
others are not (e.g., vacation, California). A smart way to
know when to fuse them has yet to be established. We pro-
pose finding the mutual information between the distribu-
tion of tags in visual feature clusters as a way to determine
if visual features help assign the tag.

To estimate the pointwise mutual information we first
cluster all of the images using k-means (K=950) on the GIST
feature space. For each tag b, we calculate the mutual in-
formation between b and the visual feature space using the
formulation:

MI(b, c) =
1

K

K∑
c=1

p(b, ci) log p(b,ci)
p(b)p(ci)

+

p(b̄, ci) log p(b̄,ci)

p(b̄)p(ci)
(7)

Table 1 shows tags with b with high MI(b, c). The tag
“sunset” had the maximum estimated value. The mutual
information of sorted terms decreases exponentially, so only
a few terms have potential visual use. We apply late fusion
of the dual method described in Section 5.1 with the Geo-
graphic Baseline in Section 5.3.2 to make an effective system.
If tag b has one of the 1,250 highest values of MI(b, x) as
estimated by MI(b, c), we choose to use the score from the
dual method for tag b. Otherwise, we choose the geographic
baseline score for tag b.

Table 1: Pointwise Mutual Information

Tag b MI MI(b, c)

sunset 0.00884583
clouds 0.0073968
flowers 0.00713516
beach 0.00633382

underwater 0.00429288
car 0.00398256

Figure 4: Distribution of the 230 test images ran-
domly selected from the 1.2 million worldwide.
Most examples are in the United States and Europe.

6. EXPERIMENTS
A series of experiments were performed to examine ex-

plicitly the performance of the system as a geocoordinate
predictor and a tag suggestion agent. They were performed
on the data and features described in Section 3 using the
geocoordinate prediction algorithm described in Section 4
and the annotation algorithm described in Section 5. An
analysis of smart fusion as well as the choice of ĝ, the geo-
graphic search region, are also considered.

6.1 Geo-Coordinate Prediction Scalability
In an effort to make geocoordinate prediction scalable to

millions of images, clustering was performed on the 512-
dimensional GIST feature that was found to have the best
performance for this task, as seen in Figure 2. Using fewer
clusters results in feature comparison with more of the 1.2
million images, which we expect to lead to better accuracy
but slower prediction time. Figure 5 shows the tradeoff be-
tween the number of clusters and the accuracy of the predic-
tion, that is, the percentage of test images that were placed
within 200km of the owner-supplied geotag. Results indicate
performance of estimation holds up to 200 clusters, while
improvement in computation time begins to saturate at this
point.

6.2 Precision-Recall of Tag Suggestions
For the remaining experiments, 230 images were reserved

as a testset. These images and all images from the same
owner were removed from the collection and the learning
used in this paper is done without the benefit of the 104,000
images from owners of test images. A web interface was
provided for a team of judges to select correct tags for the
test images from a randomized subset of the tags suggested
by any of the methods. The web interface provided the
analyst with the test image along with the owner-supplied
tags and a map centered at the geotag of the image. The
analyst could then click on the relevant tags and submit.
Tags not clicked but that had been offered were considered
incorrect. In the following subsections various experiments
on the database are presented that judge the performance
of an annotation method by precision/recall. Precision is
taken to be the number of tags provided by the algorithm
that were judged correct, while recall is the number of total
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Figure 5: Results for geolocation system in terms of
performance and speed with increasing number of
clusters ranging from 25 to 950.
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Figure 6: Precision vs. recall curve comparing dual
method to two baselines. Geographic prior is found
to outperform dual method suggesting visual infor-
mation is best employed only for tags where it helps.

relevant tags discovered using any method that are covered
by the particular method.

6.2.1 Dual Method vs. Baselines
In this experiment, we compare the annotation probabil-

ities offered by the dual algorithm to the visual and geo-
graphic baseline methods. The visual baseline compares val-
ues of p(b|x), and the geographic baseline values of p(b|g),
as compared to the suggestions offered by p(b|x, g). Figure
6 presents the discouraging results from this experiment,
which show a combination method that calculates the prob-
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Figure 7: Performance of various algorithms on a
subset of hand selected visual tags such as “beach,”
“sunset,” “nature,” “wildlife.” This subset of 9%
of the tags performs best when using only a vi-
sual based coder, and accordingly, the proposed vi-
sual/geographic algorithm shows improvements for
this subset of tags as compared to the geographic
prior-only baseline.

ability of a tag as p(b|x, ĝ) performs near or worse than
the geographic baseline, which formulates the problem as
only maximizing p(b|g). As is expected in an extremely
noisy, non-object oriented dataset such as tourist photos,
the visual-only baseline performs extremely poorly. Indeed,
most “correct” tags were place names and a formulation that
maximizes only p(b|x) covers few place names.

Research from Joshi shows similar difficulties in seeing
gains by fusing visual information with a geographic baseline
for words such as “vacation,”“university,” and “stadium” [6].

6.2.2 Visual Tags
A subset of tags was selected manually to verify the situ-

ations where a dual visual and geographic approach would
outperform a geographic baseline. The tags are listed in
Table 2. Results of algorithms on only these keywords are
given in Figure 7.

Table 2: Manually selected keywords expected to
be visually relevant. Results of algorithms on only
these keywords are given in Figure 7.

nature, outdoors, mountain, sky, tree, water, sea, bridge,
beach, jungle, park, animals, tower, flower, river, trees,
boats, ship, architecture, wildlife, clouds, palm, overcast,
door, desert, highway, house, street, city, building, skyline,
ocean, snow, steam, forest, sunset, tropical, church

Figure 8 shows the results of using this mutual information
to fuse smartly the dual method with the geographic base-
line, and Figure 9 provides examples of the tags suggested
using this method compared to the visual and geographic
baseline. A performance gain, while not pronounced, is seen
in the higher ranked tags. Tags with visual information oc-
cur in low frequency compared with place names and hence
there is a limit to improvement.

6.2.3 Geographic Baseline vs. Reverse Geo-Coding
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Figure 8: Performance of smart fusion against geo-
graphic baseline.

image

visual 
baseline

Dual visual 
and 

geographic 
method

Orlando, florida, United States, 
themepark, night, cathedral, 
view, Seoul, nad conference, 
national association for the deaf, 
Landscape, Great Salt Lake, stars

bridge, California, nocal beach, OIF, africa, vacation, 
water, boat, sea, trip, ocean, 
clouds

California, United States, 
bridge, Golden Gate Bridge, 
golden gate, August

British Columbia, Canada, 
Vancouver, bc, City, building, 
tree, sea, park, boat, bay, House, 
fireworks, celebration, light, 
celebration, beach, sunset, 
ocean, trip, flower, sand, aerial, 
stanley park, BritishColumbia, 
helijet

florida, United States, Orlando, 
Universal Studios, usa, 
vacation, flickr, fireworks, bar, 
Night Photography, disney, Club 

994514 536489 147754

geographic
baseline

san francisco, California, United 
States, Golden Gate Bridge, 
bridge, nocal, fortpoint, San 
Francisco Coastal Trail, gigi4791,
golden gate, Presidio, August, 
Seacoast Fortifications, North 
Vista

Vancouver, Canada, bc, bay, 
fireworks, celebration, light, finale, 
English, 150, British Columbia, 
iPhone, iPhone, AirMe, 
WeatherBug, beach, City, sunset, 
stanley park, building, ocean, 
Mostly Sunny, sea, thelastminute, 
thelastminuteblog, clouds, tree, 
Granville Island

Orlando, florida, Universal 
Studios, Universal city Walk, 
Islands of Adventure, vacation, 
usa, FL, sign, citywalk, microsoft, 
flickr, CSC National Sales 
Meeting, TechEd2007, bar, Night 
Photography, Royal Pacific 
Resort, laser show, nightlife, 
teched, Cinco de Mayo, 
Universal Orlando, Walt Disney, 
United States, 2004, Landscape, 
Club, fireworks, Red Coconut, 
lounge

FlickrID

Figure 9: Example tags suggested by each method.
Suggestions are in order of decreasing confidence.
Bold red for correct, black plaintext for incorrect.

An experiment was done that performed a reverse geo-
coding on the query geocoordinates to examine the perfor-
mance of the geographic baseline. The reverse geo-coder
used the Flickr API [25] to lookup a geotag and then suggest
the associate city, region (e.g., state or province), and coun-
try as annotations with maximal score. The performance
increase that can be seen from the geographic baseline to
one that has undergone this reverse geocoding is evident in
Figure 10.

6.2.4 Definition of Geographic Search Region, ĝ

A comparison was made between the performance of the
algorithms based on the area of the geographic footprint of
the node. Performance was measured for two groups based
on density, split at the median of geographic footprint area.
We examine the performance of the baselines with the com-
posite algorithm to determine their performance as a func-
tion of image density. The results are shown in Figure 11.
The dual geo+visual method performs better initially for

Reverse Geocoding
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Figure 10: Improvement on geographical baseline by
providing location terms from reverse geocoder.
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Figure 11: Comparison of performance based on
density of images at geocoordinate of image. While
the dual geo+visual method and the geographic
baseline are significantly affected by the density of
images in the area (they perform better in dense
areas), the visual baseline exhibits a mixed tradeoff
when we separate by image density.

denser regions, suggesting the system can be tuned to offer
high ranking visual-based annotations in such areas.

Additionally, a comparison was made between using the
quadtree to find an appropriate region and a fixed geo-
graphic area. This study analyzes whether the use of a
quadtree, which terminates at a level of minimum support
in a geographic area, is a robust way of determining a geo-
graphic area of relevance. Figure 12 shows:

• 1) geographic baseline using the quadtree against

• 2) a formulation of p(b|ĝ) that fixes a radius of 7km
around the geocoordinates of the target.

If the image was taken in a dense area (e.g., New York
City), then method 2) will include more images in calcu-
lation p(b|ĝ); if it was taken in a less popular area (e.g.,
Antarctica) then method 2) will include fewer images in
measuring the probability of a particular tag. The fixed
radius of 7km was chosen because it was the average of the
corresponding radii taken at the level of minimum support
for method 1).
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Figure 12: Comparison of performance using a
quadtree to determine geographic area versus a fixed
radius. The quadtree defines an area of influence
based on sample distribution, while a fixed radius
allows for many cases with too few images.

7. CONCLUSIONS
In this work we have presented a world-scale tag sugges-

tion system which employs a database of 1.2 million geo-
tagged images in order to provide annotations for input pho-
tographs taken anywhere in the world. Geolocation estima-
tion can be quickly provided to aid the user interface. Rel-
evant annotations were found to be highly geographically
dependent, as seen by the performance of a baseline de-
rived from representing the geographic tag distribution on
a quadtree. Tag suggestions which are aided by visual anal-
ysis can be determined via estimating mutual information,
and we found that visual methods hold the most promise for
densely sampled regions. In the future we will explore effi-
cient methods for scaling the system up to a larger dataset.
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