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ABSTRACT

A new technique for embedding image data that can be recovered in the absence of the original host image, is
presented. The data to be embedded, referred to as the signature data, is inserted into the host image in the DCT
domain. The signature DCT coefficients are encoded using a lattice coding scheme before embedding. Each block of
host DCT coefficients is first checked for its texture content and the signatured codes are appropriately inserted
depending on a local texture measure. Experimental results indicate that high quality embedding is possible, with no
visible distortions. Signature images can be recovered even when the embedded data is subject to significant lossy
JPEG compression.

1   INTRODUCTION

Embedding signature images into other images and video has applications in data hiding and digital watermaking.
In the past few years, much progress has been made in developing watermarking techniques that are robust to signal
processing operations such as data compression1,2. Signature information for watermarked images range from pseu-
dorandom sequences to small image icons that can be easily recovered and authenticated. Emphasis is on authentica-
tion rather than the quantity and quality of the recovered signature.

In contrast, in perceptual data hiding, one is interested in embedding and recovering high quality multimedia data,
such as images, video and audio. The host multimedia data itself could be subject to signal processing operations,
typically compression. Depending on the end user application, both lossy and lossless data embedding is of interest.
Like in digital watermarking, two scenarios are possible: (a) the original host into which the data is embedded, is
available. Some of the recent works address this problem1,3,4,5,6. (b) the original host information is not available3,7,8.
This is a much more difficult problem.

In 3 a spatial domain embedding based on bit replacement, is presented. Spatial domain strategies are quite sensi-
tive to transformations on the embedded signal. In7 a robust technique to hide speech and video in compressed video
is presented. The bit rate is about 2 bits per 8x8 block. A technique based on multidimensional lattice coding for data
hiding is described in8 where the data rate is slightly less than 1% of the host data.

This paper addresses specifically the problem of image data hiding and recovery in the absence of host image data.
Compared to related work, the proposed technique can embed significantly larger amount of signature data into the
host - upto 25% of the host data, with little or no perceptual distortion.

A schematic of our data embedding scheme is shown in Figure 1. A key component of this scheme is embedding
using multidimensional lattices (Section 2). Signature and host images are transformed using the block Dicrete
Cosine Transform (DCT). The block size chosen is 8 x 8 pixels. The signature coefficients are quantized in two steps.
First, by using the standard JPEG quantization matrix, and then by a user specified signature quantization matrix. The
signature quantization matrix determines the relative size of signature data compare to the host data, thus controlling



the quantity and quality of the embedded data (Section 3). These quantized signature coefficients are then encoded
using the multidimensional lattices and inserted into the host DCT coefficients. This insertion is adaptive to the local

texture content of the host image blocks and controlled by the block texture factor (Section 4). The steps in embed-
ding are summarized in Section 5 and Section 6 concludes with experimental results.

2   EMBEDDING USING MULTIDIMENSIONAL LATTICES

2.1   Methodology

If the original host image is available, the operations of data injection and retrieval are, in fact, very similar to the
channel coding and decoding operations in a typical digital communication system. Channel coding refers to the
gamut of signal processing done before transmission of data over a noisy channel. In watermarking in the transform
domain, the original host data is transformed, and the transformed coefficients are perturbed by a small amount in one
of several possible ways in order to represent the signature data. When the watermarked image is compressed or mod-
ified by other image processing operations, noise is added to the already perturbed coefficients. The retrieval opera-
tion subtracts the received coefficients from the original ones to obtain the noisy perturbations. The true perturbations
that represent the injected data are then estimated from the noisy data as best as possible.

In this work, we adopt a vector-based approach to hidden data injection4,9,10. We group N transform coefficients to
form an N-dimensional vector, and modify it by codes that represent the data to be embedded. The motivation for
using vector perturbations as opposed to scalar perturbations follows from the realization that higher dimensional
constellations usually result in lower probability of error for the same rate of data injection and the same noise statis-
tics. In Figure 2, ‘x’ represents a host vector in an N-dimensional space. To embed data from anβ-ary source with
symbols {s1, s2, ... , sβ}, we perturb the original vector so that the perturbation coincides with one ofβ corresponding
channel codes. The perturbed vector is denoted by one of the ‘o’s in Figure 2, depending on the particular source
symbol it represents. After the watermarked image has undergone compression or other transformations, a perturbed
vector representing, for example symbolsi in the diagram, may be received as a noisy vector ‘* ’, as shown in Figure 2
(b). It is then an estimation problem to extract the transmitted symbol from the vector received. Assuming an additive

FIGURE 1. Aschematic of data embedding. Data is embedded in the bolck DCT domain. Signature DCT
coefficients are quantized, coded using lattice codes and adaptively embedded into the host DCT coefficients using a
texture masking strategy. See Figure 5 for details of the encoder.
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Gaussian noise model, the received vector is decoded as representing the symbol, whose channel code it is closest to,
in Euclidean distance.

Codes derived as subsets of multidimensional lattices have been shown to be very efficient for channel coding. In
the following, we provide a brief review of lattice structures.

2.2   Lattice Structures

The Voronoi regions of various n-dimensional lattices can be used to constructn-dimensional quantizer cells for
uniformly distributed inputs. It has been shown by Conway and Sloane9 that some of these lattices produce very
good channel codes, and yield high values of nominal coding gain. That is, for the same power constraint on the chan-
nel, the channel codes are maximally separated from each other so that they are most robust to noise. The lattices con-

sidered here are the root lattices and their duals, namely, , , , , , etc. Ifa1, ..., an are n linearly

independent vectors in anm-dimensional Euclidean space with , the set of all vectors

(1)

whereu1, ...,un are arbitrary integers, constitute ann-dimensionalroot latticeΛn
9. Further, if is a lattice in , the

dual lattice 9, consists of all pointsx in the span of such that for all . Some common lattices
and definitions are presented below.

For , is the n-dimensional lattice consiting of the points  in with .

For , consists of the points in with even. In other words, if we color the inte-

ger lattice points alternately red and blue in a checkerboard coloring, consists of the red points. In 4 dimensions

the  lattice is known to yield the best coding gain.

, , andΛ16 lattices give very good channel coding gains in 6, 8, and 16 dimensions respectively. is

derived from the  lattice, and is defined as the union of  and the coset
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FIGURE 2: Encoding using lattice structures. (a) Possible β-ary perturbations of the host vector. (b) Possible noisy vec-
tor positions of original perturbed vector si after transformation.
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.

In other words consists of the points (x1, ..., x8) with and even, together with the points (y1, ..., y8)

with and even. is a subspace of dimension 6 in , consiting of the points

 with u6 = u7 = - u8.

For a n-dimensional latticeΛ, the Voronoi region around any lattice point is the set of points in closest to the
lattice point. Therefore, the Voronoi region V(0) around the origin is given as:

(2)

2.3   TheD4 Lattice

It has been shown in9 that some lattices produce very good spherical codes for channel coding. That is, for the
same constraint on deviation from the true coefficient values, the channel codes are maximally separated from each
other so that they are most robust to noise.

In general the root lattice produces the best channel code in 4 dimensions. For small noise, this lattice gives a

nominal channel coding gain of 1.414 over binary encoding9. As mentioned earlier, the lattice consists of the

points(x1, ..., x4) having integer coordinates with an even sum.

As in all lattices, the lattice points of the lattice fall on concentric shells of increasing distance from the all

zero vector. For example, the 24 lattice points given by all permutations of ( , , 0, 0) lie on the first shell of the

lattice at a distance from the center. The second shell at distance 2 from the center contains 24 lattice points

again, 8 of which are of type ( , 0, 0, 0), and 16 are of type (, , , ). Table 1 shows the shell number,

the squared norm, the lattice point types, and the number of lattice points for the first few shells of the lattice. The
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TABLE 1: Code types and structure of theD4 lattices

Shell
No.

Squared
Norm

Source codes
Number
of codes

1 2 ( , ,0,0)p 24

2 4 ( ,0,0,0)p,
( , , , )p

24

3 6 ( , , ,0)p 96

4 8 ( , ,0,0)p 24
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superscript ‘p’ after the points in the table denote ‘all permutations of’ the elements constituting it. By choosing
appropriate subsets of points from the lattice the rate for data embedding can be varied.

3   SIGNATURE IMAGE QUANTIZATION

There is clearly a trade-off between data embedding quantity and quality of reconstruction. We propose a simple
scheme here for quantizing signature image data using the block DCT quantization matrix. This approach enables, as
demonstrated later in the experimental results, robust recovery of signature data when the embedded image is subject
to JPEG compression.

Consider an 8 x 8 DCT coefficient matrix. From image compression and information theory, it is well known that
low frequency coefficients require more bits than the high frequency ones. One such quantization matrix indicating

the number of quantization levels for each of the 64 coefficients is shown in Figure 3(a). These quantized coefficients
are embedded in a lattice structure as described in the previous section. For simplicity, we will consider only those

shells in the lattice structure whose elements are . One way of distributing these coefficients is as follows:

• Quantization Level=1232. Use Lattice type : The first and second shells of lattice combined have

2400 code words, however, we use here 1232 code words from the combination of first shell and part of

second shell in this lattice. Since an code has eight components, it requires 8 host coefficients to embed

one code. There are 3 coefficients with this quantization, requiring 24 host coefficients to embed.

• Quantization Level=342.Use Lattice type : The first and second shells ofE6 lattice contains 342 code

words. Six host coefficients are needed to embed an code. The six coeffiecints in the DCT matrix thus

need 36 host image coefficients to embed.

• Quantization Level =48.Use Lattice type : The first two shells ofD4 are used to encode 48 levels.

Each code requires four host coefficients. There are thirteen coefficients with this quantization, thus

requiring 52 host coefficients.

FIGURE 3. (a) Example of a signature quantization matrix for an 8 x 8 DCT coefficient block. This requires 112 host
image coefficients to encode (see text for details). (b) A partitioning of the host DCT block for signal insertion
(shaded regions). 28 coefficients are used in each block. Thus, four host DCT blocks (4x28=112) are needed to embed
one 8x8 signature DCT block.
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The scheme outlined above thus needs a total of 112 host coefficients to embed the 64 DCT coefficients from the
signature image.

3.1   Host Coefficients

The next step in embedding is to identify the host coefficients which are affected by the data embedding proce-
dure. The low frequency components contain most of the host signal energy but they can not be easily modified as
such changes may become visible. The high frequency components, which usually pack the least amount of energy,
could be easlily removed because of signal processing operations. This leaves us with the mid frequency components.

Consider an 8 x 8 block of host image coefficients, as shown in Figure 3(b). The shaded regions indicate the fre-
quency components that are identified for encoding the signature image data. In this example, 28 host coefficients are
used in each block, thus requiring four host DCT blocks to encode one signature block of Figure 3.

Another example of signature image quantization and the corresponding host coefficient allocation are shown in

Figure 4. Notice that 192 host coefficients are needed for this case (6X for , 16X for , and 12X for = 6x8

+ 16x6 + 12x4 = 192). One possible way of distributing this is shown in Figure 4(b) where 12 host coefficients are
identified for insertion. This requires a total of 16 host DCT blocks per signature block.

4   TEXTURE MASKING

The signature coefficients are adaptively embedded into the host image coefficients. Recall that insertions into host

image regions with low texture information would result in visible distortions. The texture block factor controls the
weighting of the signature coefficients for each 8 x 8 DCThost image block. We use a normalized measure of texture
energy, defined as:

(3)

FIGURE 4. Another example of a signature quantization matrix and a corresponding host coefficient allocation. This
requires 192 host coefficients, which are distributed over 16 blocks, 12 coefficients per block, as shown by the
shaded regions in (b).
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where is the average energy in band B ( ) after a one level discrete wavelet decompo-

sition of the host image and is the average energy in band of a given 8 x 8 host image block. char-

acterizes the given block texture energy for a given band . A Haar wavelet transform is used in the experiments. If

exceeds a given threshold, say , then the corresponding block is considered to have significant tex-

ture in band . If the block texture energy exceeds the threshold for two out of three bands, then the block is consid-

ered to be highly textured. Similarly, if two out of three band energies fall below the threholds , then the

corresponding block is considered to be low in texture.

Each host image DCT block is thus classified into one of highly textured, normal, or low textured block, and the

texture block factor  is appropriately set. In the experiments below, the following parameter values are used:

; ;

5   DATA EMBEDDING

We can now summarize the various steps in the embedding procedure. Figure 5 gives the details of the encoder
block.

1. The host and signature images are transformed to the DCT domain. A block size of 8x8 is used in the experi-
ments below.

2. Each block of 8x8 host image pixels is analyzed for its texture content and the corresponding texture block

factor  is computed.
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FIGURE 5. A schematic of the encoder
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3. The signature coefficients are quantized according to the signature quantization matrix and the resulting quan-
tized coeffients are encodes using lattice codes. The lattice codes are so chosen that the code vectors contain

only  or zeros.

4. The signature codes are then appropriately scaled using the total scale factor and the JPEG quan-

tization matrix11. The JPEG quantization matrix helps in renormalizing the code vectors so that they have a

similar dynamic range as a typical DCT block. Note that , which in turn constraints the choice of and

.

5. The selected host coefficients are then replaced by the scaled signature codes and combined with the original
(unaltered) DCT coefficients to form a fused block of DCT coefficients. Note than more than one host coeffi-
cient is needed to encode a single signature code.

6. The fused coefficients are then inverse transformed to give an embedded image.

As discussed earlier, the choice of signature quantization matrix affects the quantity and quality of the embedded

data. Choice of the scale parameter depends on the application. A larger value for results in a more robust
embedding at the cost of quality of the embedded image, i.e., there could be perceivable distortions in the embedded

image. A smaller may result in poor quality recovered signature when there is a significant compression of the
embedded image.

6   EXPERIMENTAL RESULTS AND DISCUSSIONS

Figure 6 shows the host and signature images used in the experiments. We use two different sizes for the host
image: For embedding using the signature quantization matrix of Figure 3, a 256x256 host image is used, resulting in
25% data embedding. A 512x512 host image is used with the quantization matrix of Figure 4.
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Figure 7 shows the embedded images with and without texture masking. The signature quantization matrix shown
in Figure 4 is used for this. From Figure 7(b), it is clearly seen that texture masking reduces visible distortions in
regions that areflat, as in the sky part of the image.

Figure 8 shows recovered host and signature images for two different quantizations of the signature data, using
texture masking. In this case, the embedded images are lossy compressed by JPEG to 89%. Obviously, the quantia-
tion matrix of Figure 4 yields better results than the one shown in Figure 3 at the cost of more host bits per signature
coefficient.

Finally, Figure 9 shows the quality of the embedded and recovered images using the PSNR as a measure. It is clear
from these graphs that one can achieve better quality embedding using the quantization matrix of Figure 4 at the cost
of lower bit rate for the hidden data. Even at 25% embedding, one can recover visually acceptable quality results for
upto 90% lossy compression using JPEG.

6.1   Discussions

We have proposed a robust data hiding technique for embedding images in images. A key component of the
scheme is the use of multidimensional lattice codes for encoding signature image coefficients before inserting them
into the host image DCT coefficients. Texture masking is used to reduce distortions in the embedded image by adap-
tively controlling the weights associated with the hidden data.The hidden signature data can be recovered in the
absence of the original host image. Experimental results show that this method is robust to lossy image compression
using JPEG. One can trade-off quantity for quality of the embedded image by choosing appropriate signature quanti-
zation matrices.

FIGURE 7. Watermarked images with and without texture masking. The signature quantization matrix shown in Figure 4 is used.
Host image is 512x512 pixels and the signature image is 128x128 pixels. Notice the visible distortions in the sky region in (a).

(b) Embedded with texture masking(a) Embedded without texture masking

(α = 5, 89%, PSNR 26.8dB) (α = 5,γ = 2, 89%, PSNR 29.4dB)
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