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Abstract

This paper presents an algorithm for constructing
object representations suitable for recognition. The system
automatically selects a representative subset of the views of
the object while constructing the eigenspace basis. These
views are actively located for object identification and pose
determination. All processing is performed on-line. The
camera is actively positioned during both representation
and recognition. When tested with 240 views for each of
seven objects, the system achieves 100% accurate object
recognition and pose determination. These results are
shown to degrade gracefully as conditions deteriorate.

1   Introduction

Most vision tasks require some level of object recogni-
tion. Recognition requires that each object be represented in
some way that facilitates identification. The representation
is integral to recognition.

This paper addresses the problem of constructing an
eigenspace representation quickly, even on-line. An exact
representation is costly to construct, so it is approximated
from a subset of the object views. Images are included in the
subset based on saliency, a measure of information not al-
ready contained in the representation. Saliency is defined in
section 2 of this paper. The system stores the coefficients for
the selected images only; it actively searches for views cor-
responding to these images during recognition.

1.1   Previous work

Methods for recognizing objects from appearance have
been studied for over a decade. Early object recognition
methods use geometric models [1], [3], which are impracti-
cal for a large object set. Recent methods learn the object
representations automatically [7], [4], [2], using the eigens-
pace techniques developed for face recognition [9], [10].

Murase and Nayar propose a parametric representation
for object recognition [7]. They build object representations
by sampling the eigenspace coefficients as the object rotates
or the lighting changes. A cubic spline interpolates the coef-
ficient hypersurface from these discrete points.

Borotschnig et al. [2] propose an active framework to
augment the parametric eigenspace method. They use prob-

ability distributions to fuse the information gathered in mul-
tiple views. The system plans the camera motion to quickly
distinguish between the most likely candidate identities.

Chandrasekaran et al. [4] propose an algorithm for iter-
atively updating an eigenspace representation. They present
a saliency measure and a method of selecting a subset of the
ensemble as part of representation building.

Thesalient image searchmethod presented in this work
uses the eigenspace update algorithm from [4]. Their subset
selection method can be seen as an approximation to the
greedy algorithm developed in this paper.

The paper is organized as follows. Section 2 defines ter-
minology. Section 3 discusses subset selection. Section 4
tests approximations to the greedy algorithm and Section 5
tests each step of the salient image search. Section 6 tests the
complete system. Section 7 concludes the paper.

2   Terminology

Eigenspace representation: A low-dimensional repre-
sentation of an ensemble of images. Given a set of images
stored as vectors, for , principal com-
ponents analysis (PCA) finds a compact eigenspace repre-
sentation of the images by calculating a small set of vectors,

where and is the dimen-
sion of the representation, which linearly reconstructs every
image. The coefficients describing image are

for , where is the mean
image of the ensemble. The image is reconstructed as

, with a summation over .
In this research, the singular value decomposition

(SVD) calculates the eigenvectors. This de-
composition can be efficiently incremented [4] when a new
image, , is added to the existing representation .

Saliency (S): The information in an image, relative to a
representation. For an eigenspace representation, the infor-
mation is the amount of energy not captured by the basis set,
the residual error. During representation building, high sa-
liency indicates the representation needs updating to better
capture the training set. During object recognition, low sa-
liency indicates the image is a member of the ensemble rep-
resented by the basis set. In the latter use, saliency is related
to distance from face space (DFFS)proposed in [10] for re-
jecting “non-face” images with a face identification system.
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Batch algorithm: The standard method for computing
the eigenspace representation of an image ensemble. This al-
gorithm has one parameter: the amount of basis set trunca-
tion. All the column-scanned images are gathered in the
training ensemble in one matrix; the basis set is computed by
a one-time SVD of this matrix. Finally, this set is truncated.

3   Subset selection

Computing an eigenspace basis with the batch algo-
rithm is expensive. Many researchers approximate the basis
using a subset of the ensemble. If the images are ordered
(e.g. a series of views of an object), the subset is selected as
every th image from the ensemble (SBM). This approach
is used in the parametric eigenspace [7]. For unordered im-
ages, the subset is drawn randomly (RBM). This paper pre-
sents an algorithm that selects images based on their content.

Greedy algorithm: This algorithm has one parameter:
the termination criterion. The initial representation is simply
the average image. The saliency of every ensemble image is
computed; the one with the highest saliency is added to the
subset. The representation is updated as described in [4].
The process is repeated until termination is reached.

3.1   Theoretical foundation

Subset selection finds the columns from which the
best representation of matrix can be constructed. The
problem is to rearrange the columns of when the first
columns will be used to represent the entire matrix. Mathe-
matically, the goal is to find a permutation matrix, , min-
imizing the residual error, , across all of the
images. and has M columns. The
eigenspace representation is found from the SVD:

. Then the reconstruction is found from
, , and .

The key step of the subset selection algorithm of Golub
et al. [5] calculates such that the columns of are
“sufficiently independent.” With a good estimate of matrix
rank, they report, “any reasonably independent subset” pro-
duces essentially the same size residual. Without such an es-
timate, the problem is more difficult. Since the SVD is the
best method of estimating matrix rank, this algorithm cannot
be used to reduce the cost of the SVD by subset selection.

The greedy algorithm selects a subset by iteratively se-
lecting the maximizing . At each
step, the algorithm selects the column “most independent”
from the representation. Experiments show that no method
of iteratively selection will always achieve the optimal sub-
set. The difference in residual error, however, is small.

3.2   Experiments in subset selection

Four image ensembles are used in an empirical compar-
ison of the batch and greedy algorithms. One consists of 120

cropped and registered, forward-facing face images (from
the U.S. ARMY’S FERET database). The other ensembles
contain every of view of three objects, two of which are
shown in Figure 1; a total of 120 images each. The objects
are loosely segmented, so that most of the background is re-
moved. The background is set to zero.

The basis dimension is determined by a threshold for
the maximum saliency over the ensemble. The greedy algo-
rithm results are accumulated over all 120 possible initial-
izations. For the SBM and RBM the subset size is chosen
prior to PCA: SBM( ) means a subset of images. The
SBM results are calculated over all possible training
sets. Ten random image sequences are used to test the RBM
algorithm. Tables 1 and 2 show representative results.
Threshold and saliency are based on residual error, which is
the square root of the sum of the squared pixel errors. These
errors are normalized to be per pixel.

The batch algorithm uses the complete image ensemble,
so it can be considered optimal. It results in a more compact
representation than the greedy algorithm, requiring one-half
to two-thirds the basis dimensions for the same threshold.

The RBM performs surprisingly poorly in terms of
maximum saliency; it never achieves the threshold saliency
even when using two-thirds of the image ensemble. The av-
erage image is well-represented, but at least one image has
saliency nearly double the threshold.

Using the same number of images as the greedy algo-
rithm, the SBM fails to meet the threshold saliency. Table 2
shows that even using twice as many images, the SBM usu-
ally results in a less compact representation than the greedy
algorithm. Only when the SBM uses more than one-third of
the ensemble, when the threshold is 0.07, is its representa-
tion more compact.
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Table 1: Representations of FERET face database

Thresh Alg. Dim. Saliency

0.25 Batch 8 0.2398

RBM(80) 80 0.4143

Greedy 10 0.2412

3°

Figure 1: (A) Object 1 at , (B) Object 2 at .0° 0°
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Figure 2 shows the histogram of salient image selection
when the initial image is chosen manually instead of auto-
matically. The results are accumulated over all 120 initial
images.The peaks in the histogram show that the algorithm
selects the same images regardless of starting position. A
stable salient set implies the greedy algorithm selects the im-
ages that best describe the complete training ensemble.

4   Greedy algorithm approximations

The greedy algorithm provides a good trade-off be-
tween computational cost and representational quality for an
eigenspace representation. The algorithm, however, requires

saliency computations for an ensemble of images.
The proposedpeak algorithmrequires computations.

The peak algorithm examines the ensemble sequentially
and computes a running average of the images, so it is ame-
nable to active acquisition of images. The running average
causes small distortions in the representation, resulting in a
maximum saliency slightly above the threshold.

4.1   Algorithms

Peak algorithm(PA): This algorithm has three parame-
ters: the initial image, the saliency threshold, and the neigh-
borhood size. The ensemble is examined sequentially. Any
image that exhibits the highest saliency over a small neigh-
borhood and violates the threshold is added to the subset.
The representation is immediately updated. During the
search, the non-peaks that violate the threshold are stored.
Once a peak is located, the peak search is repeated through
the stored images. In theory, this recursive search could de-
generate into an search, but such degeneration has
never been observed in our experiments.

The neighborhood size parameter determines how accu-
rately peaks are located. A loss of stability of the subset and
a decrease in the compactness of the representation are evi-
dent when the peaks are located incorrectly. The greedy al-
gorithm represents the largest possible neighborhood, while
the subset selection method proposed in [4] represents the
opposite extreme: no neighborhood, any image with salien-
cy over the threshold is selected. The latter case results in

representations twice the dimension of those constructed
with the greedy algorithm.

For uniformity in these experiments, the saliency
threshold is determined off-line to produce the desired sa-
lient set size. In practice, the threshold would be held con-
stant over all the objects, resulting in saliency set sizes
proportional to object complexity [4].

4.2   Experiments with the approximations

Table 2 includes details of representations constructed
with the peak algorithm, which selects approximately one
more image than the greedy algorithm for the same thresh-
old. The peak algorithm has a stable subset, which is useful
for locating images during pose determination. This algo-
rithm is a good approximation to the greedy algorithm for
ordered ensembles.

5   Object recognition and pose determination

These experiments use image databases to simulate a
camera moving in a circle around the objects. The peak al-
gorithm constructs a representation, storing only the projec-
tion coefficients for the salient views, plus the basis images.
This saves the computation and storage costs for the hyper-
surfaces used in [7]. The recognition algorithm proceeds:
1. Initialization : The first peak is located with the PA.
2. Identification : If identification fails, the object is con-

sidered unknown.
3. Pose calculation: If pose determination fails, the

object identity is rejected.
4. Verification : Move the camera and determine the new

pose. If verification fails, the previous pose is rejected.

Figure 2: Histogram of image selection for Object 3.
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Table 2: Representations of Object 1

Thresh Alg. Dim. Saliency

0.11 Batch 3 0.1051

SBM(14) 11.5 0.1120

Greedy 6 0.1099

Peak 6.625 0.1339

0.09 Batch 7 0.0825

SBM(26) 26 0.0898

Greedy 12 0.0892

Peak 13.608 0.1073

0.07 Batch 11 0.0666

SBM(48) 14 0.0690

Greedy 23 0.0692

Peak 24.283 0.0739



For these experiments, the PA builds representations of
every of the three objects already described. Interpolated
views of the objects are used in testing. Saliency thresholds
are chosen so the PA selects approximately eight images.

5.1   Initialization

Object recognition begins with the peak algorithm, al-
lowing the system to proceed efficiently. If the object is un-
known, representation building continues. If the object is
recognized, the pose is determined next. The peak search
does not require knowledge of the object identity.

Since the system knows only the stored images, views
corresponding to these images must be found for pose deter-
mination. For an unknown object, the first peak will be a sa-
lient view. The stability of the salient images to starting point
implies this peak is near a stored image for a known object.

Locating the first peak costs floating point oper-
ations for each image examined, where is the number of
pixels in the image. An alternative to locating the first peak
searches with the eigenspace coefficients. This search de-
pends on object identity and costs operations per
image, where  is the basis dimension.

Figure 3 (A) shows a histogram of experimentally de-
termined distances from the first peak to the nearest stored
image. The first peak is occasionally distant from a stored
image, particularly where the object has symmetries. By
comparison, the histogram for a subset chosen by equally
spaced sampling of the ensemble is level from to .

5.2   Identification

For object identification, the image saliency under each
of the object representations is calculated. Images with low
saliency lie near the space represented by the eigenspace ba-
sis set. All representations giving saliency below a threshold
are considered candidate identities, with the lowest saliency
measure corresponding to the most likely candidate. If no
candidates exist, the object is unknown. The threshold is set
based on the saliency threshold used during training.

With the salient image search algorithm, the representa-
tion of the object library is merely a collection of each ob-
ject’s eigenspace representation. Adding a new object costs

; compared to with the parametric
eigenspace method (not counting the spline update), where

is the number of images of each object and is the num-
ber of objects. The representation of a large set of objects is
inexpensive to maintain with the salient image algorithm.

As the object library becomes large, however, identifi-
cation may become expensive. Identification costs

, compared to with the parametric eigens-
pace method. is the basis dimension of the representation
of the complete library, and . For a large object
library, the salient search will require an indexing scheme.

For Objects 1, 2 and 3, saliency is sufficient for object
identification. The maximum saliency over all images of self
is separated from the minimum saliency of images of any
other object by more than three times the training threshold.

5.3   Pose computation

For pose determination, the camera is maneuvered until
it reaches a locally minimal distance between the coeffi-
cients of the observed view, , and those of its nearest
neighbor in the stored image set. The distance is calculated
as , where the minimum is calculated over

, the set of stored images, and is the stored vector
of coefficients for view angle . When the local minimum of

is located, the pose is reported as . The algorithm rejects
distances above a threshold.

This search costs operations per image. When
the starting point is not locally minimal, the direction of the
search around the object is set as downhill on the observed
distance curve. Crossing too many peaks indicates an un-
known object and is used as a signal to cut the search short.

Figure 3 (B) shows the distance to the nearest vector of
stored coefficients for a set of test views. The local minima
not corresponding to stored images occur when the nearest
stored image in coefficient space differs from the nearest in
view space, usually due to object symmetries. Near the
stored images, the measures refer to the same image.

For Object 1, the first peak is a local minimum in 13%
of the trials. On the average, 4.2 images are examined to lo-
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Figure 3: (A) Histogram of distances from nearest
salient image for Object 3, Euclidean distances to the
nearest vector of salient image coefficients for Object 1.
x: stored images, o: views chosen by peak search.
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cate a local minimum. Since the test sets include only inter-
polation views, a reported pose corresponding to the nearest
stored view to either side of the actual pose is considered
correct. For this object, pose determination is 100% correct.

5.4   Verification

Pose is verified by moving the camera to the expected
location of a stored view and finding another valid estimate.
A more stringent test checks whether the approximate
change in position around the object (sensed) corresponds to
the change in pose. Verification is open to further heuristics.

As the object library grows larger, false alarms in iden-
tity become more likely. As the differences between the
training and testing images increase, the coefficient thresh-
old have to rise, causing more false alarms in pose determi-
nation. Verification reduces these errors by requiring more
information before the identity and pose are accepted.

6   Experimental results for pose determina-
tion and object recognition

This section presents results of experiments with the
proposed object recognition and pose determination algo-
rithm. As in the previous section, camera motion is simulat-
ed. Table 3 shows the details of the three test sets.
1. Seven objects, including Objects 1, 2 and 3.
2. Twenty objects from the Columbia Object Image

Library [8].
3. Five objects, including those shown in Figure 4.

The algorithm is tested on interpolation views in pose;
test offset indicates the smallest difference between test and
training images. The reported pose is considered correct if it

is the nearest training view to either side of the actual pose.
If the precise pose is required, a simple spline approximation
between stored coefficients--the parametric method de-
scribed in [7]--can be used.

6.1   Favorable conditions

Experiments with the first object set show the quality of
results under favorable conditions. A saliency threshold of
1.5 times the training saliency threshold completely deter-
mines the object candidate set. Both the initial identification
and the reported pose are correct for 100% of the views.

6.2   Graceful degradation

Experiments with object set two show the graceful deg-
radation of the results as the task becomes more difficult.

The initial identification is correct for 87% of the views.
Inability to estimate pose forces the rejection of incorrect
identities; identification is 92% correct after this step. The
simple verification scheme raises identification to 95%, and
the more stringent scheme raises it to 99.9%.

After verification, the pose is correctly determined for
84% of the views. Another 11% of the reported poses error
by approximately due to object symmetries. After the
stringent verification, the pose is correctly determined for
98.8% of the views.

6.3   Lighting variations

The experiments with the third object set show the pose
determination results when lighting varies. The 8 lighting
conditions are made up of ambient light, plus a point source
near enough to have a significant effect on object appear-
ance. In terms of the average distance between the coeffi-
cients, the lighting changes are equivalent to pose changes of

. When the training set contains more than one lighting
condition, the camera completes an entire circuit of the ob-
ject the object before the lighting is changed.

Table 4 shows the correct pose determination rate for
object set 3, given the number of lighting conditions trained
and tested. Pose determination is difficult for two of the test-
ed objects; the pre-verification information of these objects
are tabled separately from the other three. Object L2 has a
specular surface; changes in lighting conditions have a large

(B)(A)

Figure 4: (A) and (B) Object L1 under two different
lighting conditions (C) Object L2 and (D) Object L5.
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Table 3: Object set information

Set
No. of
obj.

Train
every

Subset
size

Test
offset

Light
varies

1 7 8 no

2 20 7 no

3 5 8 yes

180°

3° 1°

10° 5°

4° 2°

4.8°



effect on the appearance of the object. Object L5 has no
shape information; the edge of the ball does not move over
all viewing positions. Verification slightly increases the pose
determination rate for the simple objects and significantly
increases the rate for the more difficult objects.

The correct pose determination rate decreases as more
lighting conditions are trained. The system is allocating
some of its limited resources to representing the lighting
conditions. The verification system suppresses much of the
error caused by the loss of representational quality.

6.4   Comparison to existing techniques

The proposed salient image search method addresses
the same object recognition problem as the parametric meth-
od [7], [2]. With the salient search, both representation
building and recognition are performed on-line, while the
representation is built off-line in the parametric method.

Object recognition performance is similar for the two
methods. The salient search recognizes a set of seven objects
perfectly. A set of 20 objects is recognized with a 0.1% mis-
identification rate. Like the parametric method, the salient
search method offers nearly perfect object recognition.

Comparing pose estimation between the two methods is
more difficult. The reported pose estimation error is for
the parametric method. The correct pose determination rate
is approximately 98% for the salient image search method,
which corresponds to a normalized estimation error of

. Normalization accounts for the artificially imposed
minimum distance of between the actual and estimated
poses. An experiment with a test set differing from the train-
ing set only in lighting shows a pose error of . The sa-
lient image search method produces results similar to those
of the parametric method, at a lower cost.

Training with the salient image search method is much
less costly than training with Borotschnig’s algorithm [2],
which gathers a large number of images similar to each rep-
resentation-building image to approximate the eigenspace
probability densities. Their work shows the advantages of an
active framework: the basis dimension required to reach a
specific level of recognition is lower than with traditional
eigenspace methods, and objects with common appearance
in many views can be disambiguated.

7   Conclusions

The greedy algorithm provides a new method of select-
ing a subset of an image ensemble when constructing an
eigenspace basis. Each image is selected based on its con-
tent. The greedy algorithm results in a much more compact
representation for a given saliency threshold than the current
standards of subsampling and selecting at random.

With a linear saliency calculation cost in ensemble size,
the peak algorithm represents ordered ensembles nearly as
compactly as the quadratically expensive greedy algorithm
does. The selected subset is stable to initial conditions, mak-
ing it appropriate for the proposed recognition system.

For an active camera system with the ability to loosely
segment images, the peak algorithm makes for efficient rep-
resentation and recognition of objects. For ordinary image
distortions over a set of seven objects, the system correctly
identifies every object.

These results degrade gracefully as the differences be-
tween the training and testing images grow larger. The veri-
fication system is key to the slow degradation. Heuristics can
be added to decrease the errors further.

Future work includes testing face identification with
multiple views of the face and designing an image-skipping
algorithm for more efficient representation building.
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