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A texture-based image retrieval system for browsing In this article, we will demonstrate that texture could
large-scale aerial photographs is presented. The salient be used to select a large number of geographically salient
components of this system include texture feature ex- features including vegetation patterns, parking lots, and
traction, image segmentation and grouping, learning

building developments. Using texture primitives as visualsimilarity measure, and a texture thesaurus model for
features, one can query the database to retrieve similarfast search and indexing. The texture features are com-

puted by filtering the image with a bank of Gabor filters. image patterns. Much of the results presented are with
This is followed by a texture gradient computation to airphotos, although a similar analysis can be applied to
segment each large airphoto into homogeneous regions. LANDSAT and SPOT satellite images. A schematic dia-A hybrid neural network algorithm is used to learn the

gram of the prototype system is shown in Figure 1. Thisvisual similarity by clustering patterns in the feature
is currently being integrated into the Alexandria Digitalspace. With learning similarity, the retrieval performance

improves significantly. Finally, a texture image thesaurus Library (ADL) project (Smith, 1996), whose goal is to
is created by combining the learning similarity algorithm establish an electronic library of spatially indexed data,
with a hierarchical vector quantization scheme. This the-

providing Internet access to a wide collection of geo-saurus facilitates the indexing process while maintaining
graphic information. A significant part of this collectiona good retrieval performance. Experimental results dem-

onstrate the robustness of the overall system in search- includes maps, satellite images, and airphotos. For exam-
ing over a large collection of airphotos and in selecting ple, the Maps and Imagery Library at the UCSB contains
a diverse collection of geographic features such as over 2 million historically valuable aerial photographs. Ahousing developments, parking lots, highways, and air-

typical airphoto can take over 25 MB of disk space, andports.
providing access to such data raises several important
issues, such as multiresolution browsing (Strobel, Mi-

1. Introduction
tra, & Manjunath, 1995), and selecting images based on

The use of texture as a visual primitive to search and content.
retrieve aerial photographs is investigated. With the grow- What distinguishes image search for database-related
ing amount of imagery in the geographic databases, there applications from traditional pattern-classification meth-
is a need to develop tools for efficient extraction of infor- ods is the fact that there is a human in the loop (the user) ,
mation, and for intelligent searches and manipulation of and there is a need to retrieve more than just the best
the image data, so that the potential use of the accumu- match. In typical applications, a number of top matches
lated images can be fully realized. The required tech- with rank-ordered similarities to the query pattern will be
niques include image feature extraction for characterizing retrieved. Comparison in the feature space should pre-
the underlying image attributes, such as texture, shape/ serve visual similarities between patterns. This is an im-
contour, and color/multispectral information, and effi- portant but difficult problem in content-based image re-
cient search and indexing in the multidimensional feature trieval (Picard, 1995). Towards this objective, a neural
space. The QBIC (Niblack et al., 1993, 1995) and the network algorithm to learn pattern similarity in the feature
Photobook (Pentland, Picard, & Sclaroff, 1994) are ex- space is proposed (Section 3). This approach uses train-
amples of image content-based retrieval systems which ing data containing pattern class information to partition
make use of several of these image attributes. the feature space into many visually similar clusters. A

performance evaluation of this approach using the Bro-
q 1998 John Wiley & Sons, Inc. datz texture database is provided (Section 3.2) . Experi-
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with other multiresolution texture features using the Bro-
datz texture (Brodatz, 1966) database. The experimental
results indicate that the Gabor features provide good pat-
tern retrieval accuracy. In this article, these features are
further used to segment the images and to create a texture
thesaurus for browsing and indexing images in the data-
base. A brief review of the texture feature extraction is
given below.

First consider a prototype Gabor filter:
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FIG. 1. Content-based image retrieval system for browsing large-scale
aerial photographs. which is a Gaussian function modulated by a complex

sinusoid. A bank of Gabor filters can be generated by
dilating and rotating the above function:

mental results indicate that a significantly better retrieval
performance can be achieved. An additional advantage

Gmn(x , y) Å a0mG(x *, y *) , a ú 1, m , n Å integerof this approach is that it also provides an efficient in-
dexing tree to narrow down the search space. By combin- x * Å a0m(x cos u / y sin u) ,
ing a learning similarity algorithm with a hierarchical

y * Å a0m(0x sin u / y cos u) , (2)vector quantization scheme, a texture image thesaurus is
created to facilitate fast retrieval of patterns during query

where uÅ np /K and K is the total number of orientations.time (Section 4).
The scale factor a0m normalizes the filter responses. TheseThe main contributions of this work are in identifying
Gabor filters can be considered as orientation and scalethe various components required for building a working
tunable edge and line (bar) detectors. The statistics of thesystem and in implementing a texture thesaurus for con-
filtered outputs can be used to characterize the underlyingtent-based search of a large collection of images. Novel
texture information. Given an image I(x , y) , let wmn(x ,features of this system include a fast image segmentation
y) be the filtered output for Gmn(x , y) . The mean andscheme based on texture edge flow and the use of a hybrid
standard deviation of the amplitude Éwmn(x , y)É are thenneural network algorithm for developing the image tex-
used to form a feature vector fU to represent the inputture thesaurus. The texture feature extraction work is de-
image pattern. Five different scales and six orientationsscribed in detail in Manjunath and Ma (1996), and some
are used in the experiments described in the followingof the early work are presented in Ma and Manjunath
sections. This results in a feature vector of length 60 (5(1995, 1996).
1 6 1 2). For more details, please see the article byThe organization of this article is as follows: The next
Manjunath and Ma (1996).section briefly explains the feature extraction and segmen-

tation components. Section 3 discusses the problem of
similarity measures and the use of a neural network learn- 2.2. Image Segmentation and Grouping
ing algorithm for improving the retrieval performance.
Section 4 introduces the indexing mechanism based on a The airphoto database used in the experiments contains

images which are 5K 1 5K pixels. For simplicity, thetexture image thesaurus. Some experimental results on
browsing airphotos are shown, and Section 5 concludes initial implementation partitioned the images into 64 1

64 blocks of pixels, thus resulting in about 6,400 blockswith discussions.
per image. For each block, a texture feature vector is
computed as explained in the previous section. Figure 2a

2. Image Analysis
shows a small portion of an airphoto and its associated
tiles. A more compact image representation can be done

2.1. Texture Features for Content-Based Search
by grouping the tiles together based on texture similarity.

An image segmentation scheme which is appropriateIn our recent research (Manjunath & Ma, 1996), we
have proposed a Gabor texture feature extraction scheme for such large images and database retrieval applications

is now outlined. The proposed scheme utilizes the Gaborand provided a comprehensive evaluation and comparison
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FIG. 2. Image segmentation based on texture flow. a: An aerial photograph. b: The local texture flow after orientation competition. c: The results
after the texture flow propagation reaches a stable state. d: Boundaries detected by turning on the edge signals between texture flows in opposite
directions. e: The initial set of image regions by connecting the boundaries. f: The final segmentation results after a conservative region merging.

texture features extracted from the image tiles and per- tion where the local texture gradient is represented by the
arrows whose directions point to the texture boundaries,forms a coarse image segmentation based on local texture

gradient. Note that accurate pixel level segmentation is with darker intensities representing stronger texture gradi-
ents.often not necessary for such image retrieval applications,

although the segmentation method itself can achieve pixel
level accuracy (Ma & Manjunath, 1997). Figure 2 shows Texture edge flow propagation. Following the ori-

entation competition, the local texture edge flow is propa-the different stages of the segmentation algorithm, which
are summarized below: gated to its neighbors if they have the same directional

preference. The flow continues till it encounters an oppo-
site flow. This helps to localize the precise positions ofLocal texture gradient computation. Using the fea-

ture vectors, a local texture gradient is computed between the boundaries and concentrate the edge energies towards
pixels where the image boundaries might exist. Figure 2ceach image tile and its surrounding eight neighbors. The

dominant flow direction is identified in a competitive shows the results of this stage.
manner which is similar to a winner-takes-all representa-
tion. We call this a texture edge flow as the gradient Boundary detection. After the propagation reaches

a stable state, the final texture edge flow energy is usedinformation is propagated to neighboring pixels (or tiles) ,
and this texture edge flow contains information about for boundary detection. This is done by turning on the

edge signals between two neighboring image tiles if theirthe (spatial) direction and energy of the local texture
boundary. Figure 2b shows the results of flow computa- final texture edge flow points in opposite directions. The
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FIG. 2. (Continued)

texture edge energy is then defined to be the summation the corresponding region texture features. Let m(k )
mn and

of texture edge flow energies in the two neighboring im- s (k )
mn be the mean and standard deviation of the amplitude

age tiles. Figure 2d shows the results of this stage. of Gabor filtered outputs wmn(x , y) of the image tile k
(note that m and n refer to the filter Gmn(x , y) as discussed

Region merging. The previous stage results in many in Section 2.1) . Now we use Wmn(x , y) to represent the
discontinuous image boundaries. They are connected to filter output of the region which contains many image
form an initial set of image regions (Fig. 2e) . At the end, tiles. Based on the simple expectation rule E(W ) Å
a conservative region merging algorithm is used to group E(E(wÉk)) , the mean of filter output of the region can
similar neighboring regions. The final image segmenta- be obtained as
tion result is shown in Figure 2f.

The advantage of this approach is that it directly uses
mmn Å

1
N

∑
N

kÅ1

m(k )
mn , (3)the extracted texture features to compute the image seg-

mentation. In the current implementation, the number of
regions obtained from each large aerial photograph is where N is the total number of tiles belonging to a given
about 100–200 (compared to 6,400 original 64 1 64 region. Similarly, the standard deviation of filter output
tiles) . can be obtained using

2.2.1. Region texture features. After the image is
s 2 Å E(W 2) 0 E(W )2 and E(W 2) Å E(E(w 2

Ék))
segmented, the mean and standard deviation of Gabor
filtered outputs of each image region are used to construct Å E((m (k ) ) 2 / (s (k ) ) 2 ) .
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FIG. 2. (Continued)

Thus, discussed in Minka and Picard (1995). They noticed that
different models have different performances on different
tasks, and therefore, proposed a ‘‘society of models’’ ap-

smn Å
√
S 1

N
∑
N

kÅ1

(m(k )
mn )2 / (s (k )

mn )2D 0 m2
mn . (4) proach to combine a variety of models and try to utilize

them in the best way. The learning algorithm, based on
the user’s input, dynamically determines which model or
combination of models is best for subsequent classifica-

3. Similarity Measures and Learning tion.
In contrast, our approach focuses on the improvementThe search for similar image patterns can be consid-

of using a single feature model. The strategy is to firstered a two-step process. The first step extracts feature
cluster the patterns in the feature space and then assignvectors to annotate the underlying image information, and
a similarity class label to each subspace. When a querythe second step is to search through the database to re-
pattern is presented, the system first classifies it into onetrieve similar patterns. A similarity measure in the feature
of the subspaces, and conducts the final nearest neighborspace needs to be defined to capture the similarity be-
search only within that subspace.tween the original image patterns. However, the latter

itself is, in many cases, a subjective measure. This is
3.1. Learning Discrete Similarity Measure Usingparticularly true when the image features correspond to
Neural Networkslow level image attributes such as texture, color, or shape.

A nearest neighbor search in the entire feature space may A hybrid neural network algorithm is used to cluster
texture patterns in the feature space. This algorithm con-not be appropriate. This problem was also observed and
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tains two stages of training. The first stage performs an The updating of the weights associated with the neu-
rons is only performed within a neighborhood set Nc(n)unsupervised learning using the Kohonen feature map to

capture the underlying feature distribution. In the second of the neuron c . All the neurons outside Nc are left intact.
The neighborhood is around the neuron c and its sizestage, clusters are labelled using a winner-takes-all repre-

sentation, and class boundaries are fine-tuned using a is reduced with increasing n . The updating rule can be
formulated as:learning vector quantization scheme. This results in a

partitioning of the original feature space into clusters of
visually similar patterns, based on the class label informa- mi (n / 1)
tion provided by human observers.

Å Hmi (n) / a(n)[x(n) 0 mi (n)] if i √ Nc(n)

mi (n) if i √/ Nc(n)3.1.1. Stage I: A Kohonen feature map for clustering
texture features. The self-organizing feature-mapping
algorithm (Kohonen, 1982, 1990) is used in the first stage (6)
of learning. In this, a two-layer network transforms the
input features of arbitrary dimension into a two-dimen- where a(n) represents a time-dependent learning rate
sional discrete map, where the topological relationship with a value between 0 and 1. Note that the weights of
between different features are preserved. The first layer the selected neurons are adjusted to move in the direction
of neurons receive the input feature information, whereas of the input vector. Both the size of the neighborhood
the second layer of neurons is organized on a 2-D map Nc(n) and the learning rate a(n) decrease with the train-
for presenting the decision results. The two layers are ing time n . In the experiments in Sections 3.2 and 4.1,
fully connected, and the weights associated with these the learning rate starts at 1 and linearly decreases to 0,
connections are adjusted during the training stage. and the neighborhood size starts by including all the neu-

The motivation for using the feature map for the first rons and gradually shrinks to contain only the activated
stage of learning similarity measure is for the following neuron itself.
reasons. First, this network can adaptively separate clus- In summary, the first stage of learning partitions the
ters in the feature space. It can be shown that the mean original feature space into a number of distinct clusters,
of the cluster i is essentially the weight vector mi of the and the patterns belonging to each cluster are topologi-
corresponding neuron. Secondly, the output neurons are cally similar. Since a search will be conducted within
topologically ordered in the sense that neighboring neu- each cluster to order the patterns based on simple distance
rons in the lattice correspond to similar clusters in the measures (such as the Euclidean distance) , a second stage
original high-dimensional feature space. Thus, in addition of supervised learning is used to fine-tune the network
to dimensionality reduction, it also preserves the topology parameters. After the second stage of learning, each out-
of the feature vectors. put neuron will have an associated class label.

The weights in the network are adjusted based on com-
petitive learning. The output neurons of the network com-

3.1.2. Stage II: Cluster labeling and learning vectorpete among themselves in a winner-takes-all representa-
quantization. Following clustering, the first phase of su-tion (Haykin, 1994). Each neuron in the output layer
pervised learning labels the output neurons of the Koho-represents a unique cluster of image patterns. For any
nen map. This is done by presenting a number of traininggiven input feature vector, only one active neuron can
feature vectors with known classification to the network.exist in the output layer. The end result is that the feature
The output neurons are assigned to different classes byspace is now partitioned into a number of distinct clusters.
majority voting. However, the feature map is mainly in-The training of the network is performed by randomly
tended to approximate input feature vectors, or their prob-presenting a feature vector x to the input layer of the
ability density functions. A fine-tuning of the network isnetwork and adjusting the connection weight vectors mi
necessary to improve the classification accuracy.according to the updating rules given below. At the begin-

Fine-tuning is performed in the second phase using aning, all the weight vectors mi (0) are initialized to ran-
learning vector quantization (LVQ) algorithm (Haykin,dom values. The only restriction here is that they be dif-
1994; Kohonen, 1990). This algorithm has been widelyferent for i Å 1, 2, . . . , N , where N is the number of
used to further improve the clustering obtained from clas-neurons in the output layer. In the absence of any addi-
sical Vector Quantization (VQ) methods. The Kohonentional information about cluster formation, the intuition
map of the first stage is basically a vector quantizer. Theis to use the minimum Euclidean distance criterion to
output neuron of the map, after labeling, represents differ-decide which neuron is activated. Let us denote the fired
ent pattern class centroids. Fine-tuning often helps in re-neuron as c , then
adjusting the class boundaries after the clusters have been
labeled for better retrieval. In this article, the type 3 algo-

c Å arg min
i

\x(n) 0 mi \, i Å 1, 2, . . . , N . (5)
rithm (LVQ3) (Haykin, 1994; Kohonen, 1990) is used
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to update the weights. The details of this algorithm are and centered on a 7 1 7 grid over the 512 1 512 image).
The first 33 subimages are used as the training data, andas follows:

Let mi and mj be the two closest weight vectors to a the last 16 are for testing. The total number of features
for training and testing are thus 3,828 (33 1 116) andgiven input feature vector x. Let C(x) be the known class

label associated with x. Let the class label associated with 1,856 (16 1 116), respectively. Figure 3 shows a sub-
image from each of the 116 large texture images. Thethe i th neuron be represented by Ci . Let di Å \x 0 mi \

be the distance between the input vector and the i th Gabor features from each of these subimages are extracted
and normalized.weight vector. Define w to be the width of the window

and let g Å (1 0 w) / (1 / w) . The input vector x is The 116 texture classes are further grouped into 32
similarity classes, each of them containing 2–6 textureconsidered to be within the window, and the following

updates are computed if the relative distances satisfy the classes. All the texture subimages belonging to the same
similarity class are visually similar. This classificationfollowing condition:
was done manually by researchers in the laboratory, and
Table 1 shows these various similarity classes and themin(di /dj , dj/di ) ú g. (7)
corresponding textures. While it is possible that different

j Case 1: Cj Å C(x) and Cj x Ci , then groups of individuals might come up with slightly differ-
ent categorizations, our experiments indicate that the ac-

mi (n / 1) Å mi (n) 0 a(n)[x(n) 0 mi (n)] tual classification will have little effect on the final perfor-
mance as long as similar images are within the same class.mj(n / 1) Å mj(n) / a(n)[x(n) 0 mj(n)] . (8)

For the two layered feature mapping network, we se-
lected 400 output neurons. As a general rule, the number

j Case 2: Cj Å C(x) Å Ci , then
of output neurons is approximately 10–15 times the num-
ber of similarity classes (clusters) to be learned. Aftermk(n / 1) Å mk(n) / 1a(n)[x(n)
the training stage, the majority rule is used to assign a

0 mk(n)] , k √ { i , j}. (9) class label to each of the neurons.
During the retrieval time, the query image is first trans-

j Case 3: Ci x Cj x C(x) , then no action.
formed into the feature space. The network then classifies
it into one of the 32 similarity classes, and within a classSince this is a fine-tuning process, the learning rate should
a linear search for the closest set of feature vectors isbegin with a fairly small value (about 0.02 in the experi-
performed using the Euclidean distance measure.ments) and gradually decrease to zero. In the experiments

Figure 4 illustrates an evaluation of the retrieval perfor-below, w Å 0.2 and 1 Å 0.3.
mance with and without learning similarity measures. TheOnce the network is trained, the search and retrieval
evaluation is based on the 32 similarity classes usingprocess is performed in the following way:
only the test data set (1,856 subimages) . By considering
different numbers of the top retrieval (horizontal axis) ,

j When a query pattern is presented, the network first
the average percentage of the images from the same simi-identifies a subspace of the original feature space which
larity class is used to measure the performance (verticalis more likely to contain visually similar patterns.
axis) . As can be seen from Figure 4, the performancej The final retrievals are then computed using a simple
without learning deteriorates rapidly (in terms of visualEuclidean distance measure with the patterns which

belong to the corresponding sub-space. similarity) after the first 10–15 top matches, the retrievals
based on learning similarity continue to perform very

In addition to retrieving visually similar patterns, an well. Figure 5 shows a retrieval example which illustrates
additional advantage of this clustering approach is that it the improvement obtained with the learning algorithm.
provides an efficient indexing tree to narrow down the
search space. The cluster centers can be used to construct

4. A Texture Thesaurus for Indexinga visual texture thesaurus for facilitating the search pro-
cess (Section 4). The previous sections demonstrated that clustering in

feature space improves retrieval results significantly. In
addition, it also provides a natural hierarchical data struc-

3.2. Performance Evaluation
ture for fast indexing and retrieval. Typically, the image
features are in a high dimensional space, ranging fromThe Brodatz texture database is used to evaluate the

performance of the learning algorithms for texture simi- tens to a few hundred components. It is well known that
traditional indexing structures, such as B-tree or R-tree,larity. This database contains 116, 512 1 512 texture

images. In order to create a number of small images which do not generalize well to such large dimensions (Alexan-
drov, Ma, Abbadi, & Manjunath, 1995).belong to the same class, we partition each of the 512 1

512 images into 49 128 1 128 subimages (with overlap, Many researchers have proposed the use of the Karhu-
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FIG. 3. Example images of 116 different textures. From right to left, and top to bottom, are the D1–D112 textures from the Brodatz album. The
last seven textures are O1–O7 from the USC database. Missing D* textures are left blank (white space) .

nen-Loeve (KL) transform to reduce the dimensions of properties that are important for identifying the pattern
similarity might be destroyed during blind dimensionalitythe feature space. Although the KL transform has some

nice properties, such as identifying the most important reduction (Krzanowski, 1995).
As an alternative, a texture thesaurus model is pro-subspace, one should be careful in its use as the feature

TABLE 1. Texture clusters used in learning similarity measures.*

* These have been identified by human subjects as being visually similar within each cluster. See Figure 3 for the
texture images.

640 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—May 15, 1998

1131 / 8N49$$1131 03-11-98 14:36:55 jasas W: JASIS



links among the stored image data based on a collection
of codewords and sample patterns obtained from the train-
ing set. Similar to parsing text documents using a diction-
ary or thesaurus, the information within images can be
classified and indexed via the use of a texture thesaurus.
The design of the texture thesaurus has two stages. The
first stage uses the learning similarity algorithm to com-
bine the human perceptual similarity with the low level
feature vector information, and the second stage utilizes
a hierarchical vector quantization technique to construct
the codewords. The salient features of this model include:

j The texture thesaurus is domain-dependent and can be
designed to meet the particular need of a specific image
data type by exploring the training data.

j It provides an efficient indexing tree while maintaining
or even improving the retrieval performance in terms
of human perception.

FIG. 4. Retrieval performance before and after learning similarity j The visual codeword representation in the thesaurus
measures. Notice the significant improvement in similarity-based re- can be used as information samples to help users
trieval with learning. browse through the database.

4.1. Texture Thesaurus Construction
posed to browse through the image database. This model
can be visualized as an image counterpart of the tradi- A texture thesaurus is constructed using aerial photo-

graphs of Santa Barbara and nearby regions taken at dif-tional thesaurus for text search. It creates the information

FIG. 5. Pattern retrieval with and without learning. Each query pattern has 15 other similar patterns in the database. The input query (d056.01)
is shown at the top of the column in each case. With or without learning, the Gabor features provide a very good representation in retrieving all
the other 15 images from the same texture class. However, note the degradation in visual similarity after that for the case without learning. The
images are ordered according to decreasing similarity from left to right, and top to bottom. For the case with learning similarity, the performance
continues without any marked degradation in perceptual similarity, even after 50 patterns are retrieved.
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FIG. 6. a: The construction of the two-level indexing tree using a learning similarity algorithm and a hierarchical vector quantization technique.
The first level partitions the original feature space into many visually similar subspaces. Within each subspace, the second level of the tree further
divides it into a set of smaller clusters. b: An example of indexing a 2-D image feature.

ferent times. A subset of the image data is manually la- spaces. Within each subspace, a hierarchical vector quan-
tization technique is used to further partition the spacebeled, and their corresponding texture features are used

as training data for the hybrid neural network algorithm, into many smaller clusters. The centroids of these clusters
are used to form the codewords in the texture thesaurus,described in Section 3, to create the first level of the

indexing tree. The purpose of this stage is to partition the and the training image patterns of these centroids are used
as icons to visualize the corresponding codewords.original feature space into many visually similar sub-

FIG. 7. Examples of the codewords obtained for the aerial photographs. The patterns inside each block belong to the same class.

642 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—May 15, 1998

1131 / 8N49$$1131 03-11-98 14:36:55 jasas W: JASIS



FIG. 8. A texture image thesaurus for content-based image indexing. The image tiles shown here contain parking lots.

Let M be the number of pattern classes in the training algorithm (GLA) (Gersho & Gray, 1992), which is sum-
marized in the following:data. Thus, the first level of the indexing tree will partition

the feature space into M subspaces. Each of these sub-
1. Begin with an initial codebook C1rset m Å 1.spaces is further partitioned using the generalized Lloyd

FIG. 9. Tool for browsing large aerial photographs using Gabor features and the texture thesaurus. Users can select any image tile or region of
interest to see the original resolution of that area (shown in the upper-left corner) and request the system to retrieve similar images from the
database. The example shown here is the tile-based search on a ‘‘bridge’’ pattern. The best 15 matches are shown in a row-scan order. The full
resolution subimages in the surrounding neighborhood of some of the tiles are also illustrated.
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FIG. 10. Examples of the tile-based search. a–c: From the vegetation areas. d: The crossmark from the runway of an airport. e: A portion of the
marked letter ‘‘S’’ in the image. f: An airplane. As can be seen, the top two matches also contain airplanes.

2. Given a codebook Cm Å {yi ; i Å 1, 2, . . . , N} ob- ing feature vectors are computed, and the vector with the
tained from the mth iteration, find the optimal partition largest distance is selected as the next codeword. This
of the feature space, that is, use the nearest neighbor process is repeated in selecting additional codewords: Let
criterion to form the nearest neighbor cells: dic Å min{dik , k √ codebook} be the distance between

i th training feature vector and the codebook vectors. The
Ri Å {x :d(x , yi ) ° d(x , yj) ; all j x i}. next entry to the codebook will be the training vector

with the maximum distance to the codebook. This proce-
3. Use the following centroid condition to update the

dure stops when the desired size of the codebook iscodebook:
reached.

Notice that the above procedure is used to constructCm/1 Å {centroid(Ri ) ; i Å 1, 2, . . . , N},
codewords for each of the subspaces. This algorithm re-
sults in a set of cluster centroids. This centroid set is thenwhich is the optimal reproduction codebook for the
used to construct the second level of indexing tree andcells just found.
the codewords. This scheme for the texture thesaurus de-4. Compute the average distortion for Cm/1 , which is
sign is in spirit similar to the tree-structured vector quanti-defined as D Å (N

iÅ1 (x√Ri
\x 0 yi \. If the change in

zation (TSVQ) for image coding. However, instead ofdistortion between the codebooks Cm/1 and Cm is less
trying to minimize the image reconstruction error, thethan a certain threshold, then stop. Otherwise set m /
goal here is to minimize the recognition or classification1 r m and go to step 2. In our experiments, we used

the criterion ÉD(Cm/1) 0 D(Cm)É/ (D(Cm)) õ 0.001 error according to the class labels provided by human
to stop the iterations. observers. In order to help users visualize the codewords,

image patterns with feature vectors closest to the cluster
The initial codebook C1 is generated based on the tech- centroids are used as the iconic representations for the

nique proposed by Katsavounidis, Kuo, & Zhang (1994). corresponding codewords.
This starts by selecting the training vector with the largest The number of codewords obtained from each sub-
norm as the first codeword in the codebook. Distance space is dependent on the number of training data classi-

fied into the corresponding subspace and their distributionbetween this initial codeword and all the remaining train-

644 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—May 15, 1998

1131 / 8N49$$1131 03-11-98 14:36:55 jasas W: JASIS



FIG. 11. An example of the region-based search. a: The down-sampled version of a segmented large airphoto. b: Retrieval result. Both the query
and retrieval patterns are from the airport areas.

within the subspace. If a class has a large number of rons organized on a two-dimensional lattice. The number
of neurons used here was empirically determined by con-data points, it requires more codewords to represent all

samples. This results in an unbalanced tree structure for sidering the number of similarity classes in the training
data. These neurons classify the input feature vectors intosearching and indexing (Fig. 6a) . An example of indexing

the 2-D image features is shown in Figure 6b. As can be one of the 60 subspaces, and within each subspace the
number of codewords obtained by GLA ranges from 5 toseen, the goal of the first level of the indexing tree is to

identify a subspace within which the search and retrieval 60. Figure 7 shows some examples of the visual code-
words in the texture thesaurus designed for airphotos. Asshould be constrained in terms of pattern similarity. On

the other hand, the second level of the indexing tree we can see, the patterns within the same class are visually
similar.mainly focuses on exploring the data distribution (or den-

sity) within the subspace, so a set of the nearest neighbors This texture thesaurus is used to process all the aerial
photographs in the database in the following way:(within the smaller cluster) can be quickly identified and

retrieved.
j When an airphoto is ingested into the database, the

texture features of the image tiles (64 1 64 blocks of
pixels) and segmented regions are extracted.4.2. Experimental Results

j These features are compared with the codewords in the
In the current implementation, the texture thesaurus thesaurus. Once the best match is identified, a two-

contains 60 similarity classes and about 950 codewords. way link between the image tile (or region) and the
In constructing the first level of the indexing tree, we use corresponding codeword is created and stored as the

image meta-data.the Kohonen feature map (Section 3.1.1) with 900 neu-
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FIG. 12. An example of region-based retrieval on the parking lots areas.

j During query time, the feature vector of the selected original resolution. The current implementation provides
pattern is used to search for the best matching both tile-based and region-based search capabilities using
codeword, and by tracing back the links to it, all candi- texture image primitives. Tile-based retrieval is useful
date matches in the database can be retrieved. in searching for local image features, such as highway

j In the final stage, the Euclidean distance measure on intersections and bridges, which are shown in Figure 9.
the feature vector is used to rank-order the similarity

Figure 10 shows more examples of the tile-based search.with the query pattern, and the best matches are shown
By clicking on any retrieved tiles, a full-resolution sur-to the user.
rounding neighborhood and the corresponding large air-
photos will be displayed on the screen. On the other hand,Figure 8 illustrates the idea of using the texture thesau-
the region-based search is appropriate for larger geo-rus for content-based image indexing. In the current im-
graphic features. Figure 11 shows an example of retriev-plementation, we have 40 large aerial photographs in the
ing a similar region from an airport; Figures 12 and 13database which contain about 280,000 image tiles and
illustrate some more region-based retrievals, including6,000 regions. Using the texture thesaurus model, search-
image patterns of parking lots, marked numbers, high-ing for similar image tiles takes only a couple of seconds.
ways, houses, and vegetation areas.Contrast this with a sequential search which would have

taken 5–10 minutes. Note that implementing this on a
traditional database system would not have resulted in 5. Discussion
any improvement because of the high dimensionality of
the feature vectors. An implementation of a texture-based image retrieval

Figure 9 shows a snapshot of the image browsing tool. system for browsing large-scale aerial photographs is pre-
Initially, this system displays a down-sampled version of sented. The components required for constructing such a
the large airphotos (about 5K 1 5K) on the screen, and system are identified and a prototype system has been

implemented. A hardware implementation of this featureusers can select any region of interest to see it at the

646 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—May 15, 1998

1131 / 8N49$$1131 03-11-98 14:36:55 jasas W: JASIS



FIG. 13. a: The region retrievals from areas containing an image identification number. b: A highway scene. c: Houses in residential areas. d:
An example of retrieving a similar vegetation patch.

extraction algorithm is under progress. A novel image itates fast search on a large image collection. Further
segmentation and grouping algorithm, which is appro- research is needed on metric representations of perceptual
priate for large images and database retrieval applications, similarity.
is proposed. Currently, we are extending these techniques By combining the learning similarity algorithm and a
to deal with color and multispectral data, as well as rota- hierarchical vector quantization scheme, we have created
tion invariance (Haley & Manjunath, 1995). Some exam- a texture image thesaurus to process and annotate all the
ples of color image segmentation can be found at http:// aerial photographs stored in the database. The resulting
vivaldi.ece.ucsb.edu/projects.html. To account for scale two-level indexing tree provides a very efficient search
change, we are currently investigating the use of pixel while maintaining a good retrieval performance. Although
resolution information (available for most geographic im- it is currently implemented using texture features for
ages) in designing the pre-processing filters for texture browsing airphotos, the concept of this image thesaurus
feature detection. model can be extended to other types of image attributes

Similarity measures in the feature space is an important and spatio-temporal groupings of basic features. We are
issue in database applications. We have proposed the use currently extending this approach to include a larger vari-
of a hybrid neural network learning algorithm to cluster ety of data, including SPOT and LANDSAT images.
feature vectors while preserving the topology and visual
similarity. As demonstrated by a performance evaluation
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