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Abstract

This paper describes a robust data embedding scheme which
uses noise resilient channel codes based on a multidimen-
sional lattice structure. Compared to prior work in digital
watermarking, the proposed scheme can handle a signifi-
cantly larger quantity of signature data such as gray-scale
or color images. A trade-off between the quantity of hidden
data and the quality of the watermarked image is achieved
by varying the number of quantization levels for the signa-
ture, and a scale factor for data embedding. Experimental
results on signature recovery from JPEG compressed water-
marked images show that good quality reconstruction is
possible even when the images are lossy compressed by as
much as 85%. Potential applications of this method include,
in addition to watermarking, digital data hiding for security
and for bit stream control and manipulation.
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1 Introduction

Digital watermarking is one approach to protecting the
rights on the digital media while not being too obtrusive
[1,2,3]. For example, a digitally watermarked image is
obtained by invisibly hiding signature information into the
host image. The signature is only recoverable by the owner
who has the key to decoding the hidden data.

Most of the existing watermarking techniques use
pseudo-random sequences or binary images as signature
data. The quantity of the data that could be embedded is
quite limited by the embedding methodology used. Typi-
cally embedding is done in the frequency domain as it pro-
vides a spatially distributed signature which is perceptually
not obvious in the watermarked image. In addition, fre-
quency domain fusion appears to be more robust than spatial
domain approaches proposed in the literature in terms of sig-
nature recovery under compression or other signal process-
ing operations.

Some recent papers have considered data hiding in color
images [4,5]. Kutter [4] proposes an amplitude modulation
scheme where in signature bits are multiply embedded by
modifying pixel values in the blue channel. The blue chan-
nel is chosen as the human visual system is less sensitive to
blue than other primary colors. Also, changes in regions of
high frequencies and high luminance are less perceptible,
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and thus are favorable locations for data embedding. Robust-
ness is achieved by embedding the signature several times at
many different locations in the image. Fleet et al [5] propose
an embedding scheme using the S-CIELAB, a well-known
standard for measuring color reproduction errors. They
embed amplitude-modulated sinusoidal signals into the yel-
low-blue color band of an opponent-color representation
scheme.

This paper extends our previous work on embedding
larger amounts of data [6,7], such as gray scale images, into
a host image. In particular, we propose an approach for fus-
ing color signature images in larger color images using
wavelet transforms and lattice structures. We use the YUV
color space for representing color. The Y component is the
luminance part of the signal, and U and V represent the
chrominance components. Adopting the YUV color space
facilitates a simple extension from images to digital video
such as those in the MPEG format. The U, V components
are down-sampled by a factor of two.

In the proposed method the host and signature images are
first wavelet transformed. The discrete Haar wavelet trans-
form is used. The wavelet coefficients are then encoded
using channel codes derived from a finite subset of the lat-
tice structure [8,9,10], which consists of all integer N-tuples
with constraints. As the quantity of embedded data
increases, higher order shells of the lattice structure are
included in the channel code to accommodate them. Results
are presented wherein the signature data is a color image of
size one quarter of the host image. As the results demon-
strate, there are no visible distortions in the watermarked
images and signature recovery is possible even with 85%
lossy JPEG compression. The following sections describe
the data embedding method and some experimental results
are provided.

2 Data Embedding
2.1 Lattice Structures

If the original host image is available, the operations of
data injection and retrieval are, in fact, very similar to the
channel coding and decoding operations in a typical digital
communication system. Channel coding refers to the gamut
of signal processing done before transmission of data over a
noisy channel. When the watermarked image is compressed
or modified by image processing operations, this is equiva-
lent to adding noise to the perturbed coefficients. The
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Figure 1: Basic lattice structure and embedding methodology. (a) Possible B-ary perturbed lattices in a basis host vector. (b) Possibly
noisy vector positions of original perturbed lattice s; after signal processing operations.

retrieval operation subtracts the received coefficients from
the original ones to obtain the noisy perturbations. The true
perturbations that represent the injected data are then esti-
mated from the noisy data as best as possible.

In this work, we adopt a vector-based approach to hidden
data injection [8,9,10,11]. We group N transform coeffi-
cients to form an N-dimensional vector, and modify it by
smaller N-dimensional vectors that represent the channel
codes. The motivation for using vector perturbations as
opposed to scalar perturbations follows from the realization
that higher dimensional constellations usually result in lower
probability of error for the same rate of data injection and
the same noise statistics.

Figure 1 shows the basic concept of the perturbation vec-
tor in the host N-dimensional vector space. In Figure 1, ‘x’
represents a host vector in an N-dimensional space. To
embed data from an B-ary source with symbols {s;, s, ...,
sg}, we perturb the original vector so that the perturbation
coincides with one of B corresponding channel codes. The
perturbed vector is denoted by one of the ‘0’s in the Figure 1
depending on the particular source symbol it represents.
After the watermarked image has undergone compression or
other transformations, a perturbed vector representing, for
example symbol s; in the diagram, may be received as a
noisy vector ‘*’ in Figure 1 (b). It is then an estimation prob-
lem to extract the transmitted symbol from the vector
received. Assuming an additive Gaussian noise model, the
received vector is decoded as representing the symbol whose
channel code it is closest to in Euclidean distance.

2.2 Embedding/Extracting Data

The human visual system is not very sensitive to changes
in the higher frequency spectrum, and as such many of the
lossy compression techniques rely on saving bits ne¢ded to
represent the information in these higher frequencies. For
this reason it is important that the signature data be embed-
ded in the lower frequency components of the host data.
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A schematic of the embedding procedure is shown in
Figure 2. The basic hiding/extracting scheme is similar to
the our previous data hiding/extracting technique using the
multidimensional lattice structures [7]. A single level of dis-
crete wavelet transformation (DWT) [12] of both the host
and the signature image is made before data embedding.
Each coefficient of the signature image is quantized into
levels. In order to embed the quantized coefficient informa-
tion, a set of N coefficients in the host image is grouped to
form an N-dimensional vector, and the vector is then per-
turbed according to a B-ary channel code consisting of a sub-
set of the lattice scaled by a factor . If ¥ represents a
vector of host DWT coefficients after grouping, and the
index of the quantized signature coefficient is i, then the per-
turbed vector W is given by:
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where C(s;) represents the channel code (subset of the lat-
tice structure) corresponding to the symbol s;.

In signature recovery, the watermarked DWT coefficients
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Figurc 2: Encoder in the Embedding Procedure
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Figure 3: Determining the closest vector from the observed vector
within each shell perturbed lattice points.

are grouped based on the B-ary channel code used in encod-
ing to obtain a new vector ¢. This is then scaled by the fac-
tor 1/a where o is as defined in (1). The resultant vector
1/00- 2 is then nearest-neighbor encoded to find the index i
of the channel code nearest to it in the Euclidean distance. In
particular, we find an index i such that:
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where the 2‘(s,.) s refer to the B code-vectors in the channel
codebook. From the index i, the quantized DWT coefficient
can be obtained.

This is illustrated in Figure 3. Assume that the symbol s;
was sent but because of compression or some other image
processing operation, the observed vector ‘*” (equal to
1/0.- 2) is obtained. If “*’ is within the triangualr decision
boundary shown, s; will be correctly estimated. Obviously
the scale factor o controls the extent of the regions around
each s;. A large scale factor can tolerate a large perturbation
at the expense of a degradation in the watermarked image
quality.

3 Experimental Results

Figure 4 shows an sample. All color images are repre-
sented in the YUV color space. Figure 4(a) shows a 256x256
color image and Figure 4(b) shows a 128x128 gray scale sig-
nature. The signature is injected into the Y component of the
transform coefficients of the host image. Figure 4(c) shows
an 81% JPEG compressed watermarked image using 32
channel codes and Figure 4(d) shows the same compressed
image using 144 channel codes. Note that there are no visi-
ble distortions in the watermarked images. Figure 4(¢) and
Figure 4(f) show the recovered signatures for the two quanti-
zation levels. The reconstructed images are of very good
quality for authentication purposes.

(a) Host (256x256) (b) Signature (128x128)
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(c) v=15, 81%, p=32 (d) 0=15, 81%, B=144

(e) 0=15, 81%, P=32 () a=15, 81%, B=144

Figure 4: (a) Host color imae, (b) Gray-scale signature image,
(c)(d) Watermarked and JPEG lossy compression images at two
different quantization levels. (you can see color images in the CD-
ROM proceeding), and (e), (f) recovered images.

Figure 5 shows an example of a color signature embed-
ding. The entire signature data is embedded in the Y compo-
nent of the host data in order not to distort the color in the
watermarked image. For this reason, the size of the signature
image is less than that for a gray scale embedding. Another
example of image embedding is shown in Figure 6. This
method can be easily extanded to video watermarking as
well.

Figure 7(a) shows the similarity of the reconstructed
image to the original signature image for various levels of
JPEG compression. A normalized similarity function S(s) is
defined as

Al

s S
"G
when s is the signature image components organized as a
vector, and 3 is the reconstucted signature vector. As can be

S(s) = (3)



(a) 0=15,81%, B=32 (b) 0=15,81%, =144

(c) Signature
(color, 100x100)

(d) from (a) (e) from (b)

Figure 5: (a),(b) Watermarked and lossy compression using
images. (c) signature image, (d),(e) recovered imags. (see color
images in the CD_ROM proceeding).

seen from the graph, the watermarked image can be easily
authenticated even at 85% lossy JPEG compression.
Figure 7(b) shows Peak Signal to Noise Ratio (PSNR) of the
reconstructed image as a function of JPEG compression fac-
tor. The PSNR is computed with respect to the original sig-
nature beofre quantization. Note that good quality
reconstruction is possible upto about 75% JPEG compres-
sion for o=15.

4 Conclusions

We have presented a scheme for gray-scale and color
image embedding using multi-dimensional laftice structures
in the DWT domain. The scheme presents a framework for a
more structured digital watermarking schemes, aimed at
embedding large amounts of data into a source. In contrast
with most current approaches to watermarking, the proposed
method enables embedding a significant amount of signature
data. In our experiments, we have demonstrated the feasibil-
ity of embedding gray scale and color images into a host
image with very little perceptual distortion. The signature
images can be recovered under lossy compression as well.
Besides watermarking, this method is suitable for applica-
tions such as image data hiding wherein smaller images can
be transmitted using larger host images.
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Figure 6: Another example of color image embedding
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