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Abstract

A new lossless image compression method for
progressive-resolution transmission of color images is
proposed. It is based on spatial and spectral trans-
forms. Reversible wavelet transforms are performed
across the red, green, and blue color components first.
Then adaptive spectral transforms are applied to asso-
ciated color subbands. Simulation results indicate that
the proposed algorithm can achieve bit rates that are
about 20% lower than results obtained with compara-
ble lossless image compression techniques supporting
progressive-resolution transmission.

1 Introduction

Recent years have seen a tremendous increase in the
generation, transmission, and storage of color images.
Although significant progress has been made for lossy
image compression [1, 2], fewer advances have been
reported for lossless techniques.

Color images are normally represented as RGB
spectral components. As a result, two sources of red-
undancy exist — spatial redundancy and spectral red-
undancy.

Traditional color image compression methods typi-
cally apply a spectral decorrelation across the color
components first. Then spatial transforms are em-
ployed to decorrelate individual spectral bands further
[3, 4]. If spectral and spatial transforms are carried out
independently, their order is insignificant and can be
reversed. This offers the opportunity to apply diffe-
rent spectral transforms to associated color subbands
sharing the same scale and orientation. The result is
an effective lossless image compression algorithm.

This paper is organized as follows. First, Section 2
briefly outlines how reversible wavelet transforms are
used to spatially decorrelate color components. Sec-
tion 3 then explains the spectral decorrelation techni-
que. In Section 4, experimental results are presented.
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Concluding remarks are given in Section 5.

2 Spatial Decorrelation of Color Bands

For lossless (or reversible) image compression, it is
important to represent transform coefficients with in-
teger numbers. As a result, for progressive-resolution
transmission applications, reversible wavelet trans-
forms (RWTs), such as the S-transform [5] or the SP-
transform [6], are often used.

The one-dimensional S-transform, for example, re-
duces the necessary word length by making intelligent
use of rounding operations. It successively decima-
tes some input sequence si[n] at resolution r = 2%
into truncated average or coarse versions si4+1[n] and
associated difference or detail signals dg41[n] at reso-
lution » = 27%~1. Applying the S-transform to an
input signal s[n] = sg[n] at resolution » = 1, we ob-
tain resolutions that are negative powers of two only,
ie, r =27% k > 0. Further information about the
notions of resolution and scale of discrete-time signals
can be found in Rioul [7]. Note that a wavelet trans-
form can also be viewed as a pyramid decomposition
scheme. Then the subscript k indicates the pyramid
level. Due to the downward truncation, denoted by
[.], the maximum number of bits required for local
averages does not change. The detail signals (wave-
let coefficients), which are composed of positive and
negative integers, on the other hand, require a signed
representation. Their number precision, thus, exceeds
the original storage format. The significantly lower
entropies of difference signals, however, compensate
for their longer internal word lengths, since they faci-
litate the use of efficient coding methods [8].

A two-dimensional S-transform can be obtained by
applying the 1-D S-transform sequentially to the rows
and columns of a color image. In this case (truncated)
average (or LL) bands at successively lower resolutions



are recursively computed by

sk[2m, 1] + sk [2m + 1, l]J
2 3

1)

sk41{m, n, 0] = [

where the (integer) averages 5x[r,[] along row r and in
color channel [ are computed via

sk[r, 2n, 1] + sg[r,2n + l,l]J
3 .

serl] = | (2)
Wavelet coefficients follow as associated directional
differences.

In Eq. (2), the sample six[m,n,!] describes a co-
lor pixel at row m, column n, and spectral band !,
observed at resolution r = 27%. The red, green and
blue color bands are specified by indices I € {1,2,3},
respectively. For brevity, the matrix of all pixels in
the I-th color band at resolution 27%,0 < k < K, is
denoted as

[l]—{sk[mnl]|0<m<M

2,4,0<n<—}

(3)
The parameters M and N are image height and width,
respectively. For simplicity, it is assumed that M =
N = 2% This facilitates a K-level wavelet transform.

The rounding operations introduce a nonlinearity
into the S-transform which produces a noteworthy
side-effect. Since both row and column averages are
truncated, fractional parts are always discarded. As a
result, the transform becomes biased, i.e., integer sca-
ling coefficients at progressively lower resolutions get
increasingly smaller than the true local averages. Alt-
hough this is a minor side-effect of the S-transform, the
balanced rounding or BR-transform offers a simple yet
effective solution to this problem. It compensates for
the roundoff error by rounding up along image rows
while truncating along image columns [9].

3 Spectral Decorrelation of Subband
Channels
Figure 1 illustrates the proposed method. There,
a reversible wavelet transform is first applied to each
color band sg[l] at resolution 27%. This yields three
transform matrices

M
{Sk41[w,v,]]0< u<

2k,0<v<——-}

Skl =

where | € {1,2,3}. Applying a reversible spectral
transform (ST) to Si4+1[l], 0 < I < 3, we obtain as-
sociated prediction errors denoted as

N
,0<v< —}.

M
el = {enpalw, v, |0 u < o "
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The combination of inverse spectral transform (ST™")
and inverse reversible wavelet transforms (RWT™') fi-
nally reconstructs the original RGB color channels ex-
actly.

For a particular color I, the transform matrix
Sk+1[l] can either be considered as an ensemble of
transform coefficients or be viewed as a collection of
four oriented subbands. Adopting the second point of
view, we describe a color subband with orientation 7
at resolution 27%~1, as

S(’?)

k1 0<

N
v < 2k+1}

M
[]_{Sk-l—l[u v l]|0<u< 2k+1’

with 1 < I < 3 and 5 € {LL, LH, HL, HH}. The
letters stand for low (L) and high (H) bands corre-
sponding to the separable application of lowpass or
highpass filters along the rows and columns, respec-
tively. Consequently, the LL-band of Sg41[] is called
Sﬁji (1], the LH-band represented by S{/}[l], the HL-
band referred to as S{}}[l], and the HH-band finally

denoted S;Tl) .

sx(1] Sk 41(1] epp1(1] Sgp4101] RW’I.[‘I s (1]
RWT [~
sx(2] :] Sg41(2] ek 4102 ;1| Sgpal2l r‘—_1| sxl2]
RWT ST ST RWT
|
s3] Sk41(3] ex+1[3] Sp41(3] -1] 5[]
RWT RWT
el —

Figure 1: Proposed color decorrelation method.

Performing a K-level wavelet transform on so[1], the
red band of the input color image with size 2% x 2K
we obtain a total of 3K + 1 oriented red subbands.
They comprise 3K channels with wavelet coefficients
and one lowpass coefficient representing the mean of
the red spectral band. Applying the same RWT to the
remaining green and blue color bands, we finally get
sets of associated red, green, and blue subbands which
can be effectively spectrally decorrelated.

Since there are potentially as many different spec-
tral transforms for a K-level wavelet transform of color
images as there are different subbands, it is normally
no longer possible to switch the order of the spatial and
spectral transforms. Instead, we gain the opportunity
to apply an adaptive spectral decorrelation method. It
is based on interband prediction as presented next.



3.1 Interband Prediction Coeflicients

For three color bands, at most a two-band predic-
tor is needed to predict the third subband from the
remaining two. After interband prediction, each co-
lor subband coefficient in the I-th band is replaced by
its difference with respect to the linear combination of
the remaining spectral neighbors. The two-band pre-
diction é,(ﬁzl [{] for the I-th color subband at resolution
27%=1 and orientation 5 can be compactly expressed
as

SUL M0 = xS [+ eaSTL A+ ST 1, (9)

with i # j # [, andi,j, 0 € {1,2,3}. S,
S(U)

k41
S,(c’zl[l] refers to the mean of the 1-th color subband.

This third-order prediction model gives rise to the fol-
lowing procedure for computing integer subband resi-
duals

9187421[1] = {61(;21

and [4] are the neighboring color subbands, while

0<

M N
[U,’U,Z]IOSU<§C—+T, v < W}
at spectral location {:

1. Compute prediction:

S0 = [os (s - [3(200], )
() 15 g 1,
+ s <Skl1[.7] - [Sk,:-][J]]R)}R
g(m

+ [sih)
where 51(31[] = E{S,(szl[]} For high-frequency
subbands (wavelet coeflicients), we have

S = S = Sl =o.

Integer values are enforced by using the rounding
operator [.]r.

2. Compute prediction error:
el = S{L - S0,

The error subband efc"_gl[l} comprises differences
between actual and predicted color subband coef-
ficients at the same spatial locations.

. Encode prediction error and include all necessary
side information such as prediction coeflicients.
Then store or transmit it.

The prediction coefficients «; and a, are obtained
by straightforward application of least-squares regres-
sion formulas. While the above derivation is for the
two-band prediction scheme, it is easily specialized to
single-band prediction.
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3.2 Interband Prediction Order

Reversible linear prediction must be implemented
such that it can be resolved based on the informa-
tion already received. Since lossless prediction involves
nonlinear rounding operations, color subband decorre-
lation must be carried out sequentially. To this end, an
anchor band has to be specified first. It serves as a refe-
rence for predicting the second color subband. Finally
the first two subbands provide the basis from which to
predict the remaining third. A prediction order must
be found such that the overall entropy after color sub-
band prediction is minimized. If we restrict ourselves
to single-band prediction, then this problem can be
modeled into a graph-theoretic problem [10]. While
such an approach holds some promise for multispec-
tral images with hundreds of different bands, better
color compression results are obtained when two-band
prediction is also considered. Then a scheme for color
subband decorrelation leads to 3! = 6 different scena-
rios. For example, the green subband component can
be used as an anchor to predict the red, then red and
green can be employed to predict the blue subband co-
efficients. A solution to the problem of finding the best
order out of the six possibilities is presented below. It
determines the prediction order such that the appro-
ximated sum of subband entropies after prediction is
smallest.

It can be shown that an approximation of the first-
order entropy of a color subband is given by [11]

H(X) = 3 logy(1007). (5)

Equation (5) provides an entropy estimate for color
subbands based on their shape factor, v,, and their
variance o2.

To obtain error variances, we select the anchor sub-

band first. Let it be denoted as S,(c"_gl[i]. Subtracting

the associated rounded mean [g,(ﬂgl
(") [i]. Next, the anchor band

k41
is used to predict the second color subband S,(c"+)1[j].
[7]. Third,

The resulting prediction error is called e,(ﬁal

S,(c’zzl[z] and S,(ﬂgl[j] are combined to estimate Sgﬁl[l].
This two-step prediction yields the difference band
egzl[l]. Finally the variances of the three error sub-
bands are computed. They are:

var{e{”), [}

[i]]R, we get the

first error subband e

B{(S{[i] - [S{2ta] )%,

(n)

var{efL i1} = E{(S{L01- [${] )7}, and
varfe{, 1} = B{S{LI - [${L 1] )7



Note that var{e,(ﬂl[i]} is associated with a zero-mean
color subband, while Var{egﬁl [1]} re-
sult from prediction residuals.

Once the variances have been computed, entropies
of their associated subbands are estimated. The sum

of entropies of all three transformed subbands at reso-
(n)

. . k+1°
it can be approximated by

[71} and var{ef:ﬁl

lution 2751 and orientation 7 is called H Accor-

ding to Eq. (5),
1
=3 (10g2 (viviv)

2
log, (var{e{™, [i]} var{e,

e,

+ (i1} var{e{Z, 1D))-

The shape factors =;, v;, and 7 are associated with

the pdfs of el(ﬂl[i], egle[j], and efﬂgl[l], respectively.
Each prediction order yields a different value for
H,(C'_Ql. The best ordering is found by selecting the
prediction sequence resulting in the smallest value for
H 151)1 For simplicity, we assume that the product of
shape factors remains constant regardless of the pre-
diction sequence chosen. The underlying assumption
is that the overall statistical character of the prediction
errors remains the same regardless of the prediction or-
der. Since the logarithm is monotonically increasing,
we only need to compare products of error variances.

4 Experimental Results

Experiments are carried out using the six test
images Barbara, Boats, Fruits, Girl, Goldhill, and
Zelda. Each consists of three color channels in RGB
format. Except Fruits, which is a 512 x 512 image, the
spatial dimensions of the other images are 720 x 576.
Three six-level different RWTs are performed. The
RWTs used are associated with the S-transform and
the TT-transform. After spatial and spectral decor-
relation, the resulting color transform subbands are
individually entropy encoded. To that end, a context-
based arithmetic coder is employed. It is based on the
implementation suggested in [6].

Experimental results are compared based on the
average bit rate per pixel (bpp), simply denoted by R.
R is based on the compressed file size and takes into
account all the side information necessary to losslessly
reconstruct the original image. It is defined as

Ro= total file length incl. overhead

[bpp].  (6)

no. pixels

The bit rates obtained with the S-transform follo-
wed by spectral decorrelation is called RS). Outcomes
associated with the TT filter band are labelled RS:™.
The results are shown in Table 1. There lowest bit
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rates are printed in bold. The second column repres-
ents the sum of the original color band entropies. It
is called H,.,. The last column lists state-of-the-art
lossless color compression results reported by Gormish
et al. [12]. They are denoted as R{S™®™),

Table 1: Color Compression Results

Images | H,., | RS RGP | RGTPW
Barbara | 22.82 | 9.664 | 12.080 | 12.050
Boats 21.35 | 8.503 | 10.929 | 10.918
Fruits | 8.74 | 6.832 | 7.182 7.181
Girl 21.73 | 8.820 | 11.115 | 11.113
Goldhill | 22.22 | 9.526 | 12.540 | 12.554
Zelda | 22.72 | 8.286 | 10.782 | 10.870

A comparison illustrates that the lowest bit rates
are achieved with the simple S-transform.

Although this result might appear unusual, a look
at Table 2 offers some insight. Shown are linear cor-
relation coefficients among HH subband coeflicients at
resolution 27!. The subbands were computed using
the S-transform. In Table 2, the parameter p‘fjm re-
fers to the correlation between the red and green sub-
band coefficients in the HH band, ng;H) denotes the
correlation between green and blue HH subband coef-

ficients, and p(lgm) specifies their red-blue counterpart.

Table 2: Correlations Among Color Subbands

pla | pos | pis

Barbara || 0.993 | 0.993 | 0.998
Boats 0.999 | 0.999 | 0.999
Fruits 0.695 | 0.667 | 0.458
Girl 0.999 | 0.995 | 0.996
Goldhill [ 0.999 | 0.999 | 0.999
Zelda 0.999 | 0.998 | 0.999

For almost all images we find that spectrally adja-
cent gradients in neighboring color channels are extre-
mely strongly correlated. It is precisely this effect that
facilitates an effective spectral decorrelation yielding
unexpectedly good lossless compression rates. Only
“Fruits” stands out as an exception to the rule. It



has large areas of saturated colors with little spectral
overlap.

5 Discussion and Conclusions

At this point a warning is in order. Spectral de-
correlation seems only beneficial if there exists a sub-
stantial amount of correlation between the color com-
ponents to start with. Otherwise, little improvement
beyond spatial decorrelation should be expected. For
the latter case, good reversible subband transforms are
essential. They normally involve well-designed filter
banks characterized by longer analysis highpass filters
with higher stopband attenuation.

Fortunately, in many cases color bands are strongly
correlated. If this is the case and lossless image com-
pression for progressive-resolution transmission is desi-
red, one could consider the simple S-transform combi-
ned with adaptive spectral prediction. Then bit rates
are possible which are about 20% lower than what has
been reported in the literature so far [12].
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