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Abstract

Image decomposition based on the discrete wavelet
transform (DWT) has been proposed for efficient stor-
age and progressive transmission of images for wvi-
sual browsing in digital image lLibraries. Although
the compression aspects of the DWT have been care-
fully researched, reconstruction errors due to corrupted
wavelet coefficients have recetved less attention. In this
paper we consider the problem of bit errors affecting
uniformly quantized wavelet coefficients. The proposed
method, which is based on a local image model, simul-
taneously detects and masks corrupted wavelet coeffi-
cients.

1 Introduction

Image compression schemes often include, as a final
stage of processing, a variable word length coding oper-
ation. The bit stream generated thus consists of words
which can only be unambiguously decoded, if they cor-
respond to codebook entries. In such a situation bit er-
rors can have a potentially catastrophic effect upon the
reconstructed image. Traditional forward error correct-
ing methods offer one solution to this problem. Their
application, however, can lead to a significant increase
in system complexity and bit-rate. Alternatively, fixed-
length codes can be used. Although their compression
performance is lower, they are inherently synchronized,
and, therefore, bit errors do not spread and corrupt
entire image regions. Depending upon the situation, a
combination of fixed-rate methods and error conceal-
ment techniques might be appropriate.

The paper is structured as follows: Section 2 de-
scribes bit error effects, and Section 3 explains the al-
gorithm for error detection and concealment. Experi-
mental results are provided in Section 4, and a discus-
sion follows in Section 5.
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2 Error Effects

Although the wavelet transform [1] has become a
popular tool for multiresolution applications, consid-
erably less attention has been paid to the impact of
corrupted wavelet coefficients on the reconstructed pic-
ture.

It is assumed that random errors are introduced in
the bits that convey information about quantizer out-
put levels, and that these are inverted in a statisti-
cally independent manner. Coding/decoding control
information (subband rates, means and quantizer bin
widths), however, is considered to be error protected
and hence correctly available at the receiver.

Wavelet coefficients are represented in sign-
magnitude format and corrupted wavelet coeflicients,
i.e., coefficients whose codewords have been affected by
random bit-flips, lead to characteristic error patterns as
shown in Fig. 1. They are, in fact, erroneous impulse
responses associated with the filters of those channels
where corruption occurred. Since the filters are known,
detecting and correcting corrupted wavelet coefficients
involves: (1) finding local outliers (candidates for cor-
ruption), (2) testing if local singularities are truly re-
lated to corrupted wavelet coefficients (note that they
could also be related to details and edges), and (3) if
corrupted wavelet coefficients are detected, replacing
them with an approximation of their true value. This
process is repeated for each reconstruction level.

Our algorithm is designed for bit error probabilities
of up to five percent, preferably less. For higher er-
ror rates, different methods should be chosen as, for
example, discussed by Clarke [4].

3 Error Detection and Concealment

As indicated earlier, it is assumed that wavelet coef-
ficients are quantized. Quantization, however, results in
setting small wavelet coefficients to zero, and hence, in
discarding fine image details and structures. It, there-
fore, effectively smoothes image regions and offers the



Figure 1. Reconstructed image from corrupted wavelet
coefficients. Corrupted wavelet coefficients appear as
characteristic error patterns related to the impulse re-
sponses of associated filters.

opportunity to use a model-based approach relying on
continuous, smooth surfaces, also called facets, to de-
tect and conceal errors [6].

Consider a closed neighborhood, W(r,c), in the
pixel domain with height A, width W, and a center-
deleted neighborhood, W(r,c), at location (r,c) as
shown in Fig. 2. Row and column indices, denoted
r and c, respectively, are taken with respect to some
suitably chosen coordinate system as shown in Figs. 3
and 4. W(r,c) can be expressed as the difference be-
tween two sets, namely the closed neighborhood set,
W(r,c), and the center region, W.(r,c):

W(r,c) = W(r,c)\ We(r, ).

(]

Figure 2: Center-deleted neighborhood W(r,¢). The
closed neighborhood W (r,¢) is the union of W(r,¢)
and W,(r,¢c).
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The dimensions of the center window W, (7, ¢) have
to be chosen such that it covers the entire filter support
or at least the region where most of the filter energy is
concentrated.

To reduce the number of false positives (type I er-
rors) and to avoid unnecessary operations, we first test
if the center region W.(r, ¢) is likely to originate from a
corrupted wavelet coefficient, and therefore, warrants
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Figure 3: Coordinate system aligned with pixel center.
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Figure 4: Coordinate system aligned with pixel bound-
aries.

further tests. This step involves a rank-ordering op-
eration among the gray levels contained in W.(r,¢)
and W(r,¢). As a result, we obtain (center) coeffi-
cients &, ;,7 = 1... N, such that z.; < x.;41. Simi-
larly the center deleted neighborhood yields coefficients
z;, ¢t =1...N, which satisfy z; < z; + 1. We consider
the center region W.(r,c) corrupted, if (1): z.; < z,
or (2): z.n. > zy. More sophisticated tests could
involve linear combinations of the rank-ordered gray
values [7].

Corrupted regions are then further investigated us-
ing the slope-facet model:

(2)

where 7(r, ¢) is assumed to be an independent additive
Gaussian noise having zero mean and variance ¢?. The
slope-facet model serves as a local approximation of the
underlying pixel intensity f(r, ¢). The estimated model
parameters, called 4, ¢, and w, are then obtained using
a least squares approach, i.e., via minimizing:

2= Y

(4,5 )EW (r,c)

g(r,c) = ur 4+ ve+w+n(rc).

[47 + 95+ — f(r —1i,c— §)]°.
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_ Without loss of generality assume the center of
W (r,c) as the origin of the relative coordinate system
for each neighborhood, i.e.,

Z i = 0,and
(3,7)EW (r,e)
Z j = 0.

(4.5 )EW (r,e)

Two coordinate systems are considered: Fig. 3 shows
an example that is aligned with pixel centers and used
to describe odd-size local neighborhoods. Fig. 4 de-
picts its pixel boundary aligned counterpart, suitable
for indexing even-size neighborhoods.

For brevity we use the short-hand notation g
for Z(i,j)EW(r,c)' It is implicitly understood that the
corresponding row and column indices are taken from
W(r,¢). Then @, ¢, and W are given by:

ZWf(r_i7c_j)'i

v = >w i *)
. Ywllr—dc—j)-j

v = S 7 (5)
. rwflr=i,c—1J)

W= v I (6)

the slope—facet model estimate becomes

(7)

To investigate whether the center region We(r,c)
should be considered as corrupted or not, we use center
differences 6,(.) taken between the pixels contained in
We.(r,c) and their reference values based on the slope-
facet model. More precisely, V (%, j) € W(r,¢)

be(r—i,c—j)=g(r—i,c—j)— f(r—i,c—j). (8)

If W.(r,c) does not result from a corrupted wavelet
coefficient, then it can be shown that all center differ-
ences have a zero-mean Gaussian distribution and that
the expected value of the sum of their squared values
is lower bounded by ¢ N,(1+ 1/N) where N, denotes
the number of elements in W.(r,¢). As a result, the
sum of squared center differences can be used to ob-
tain a center-based, conservative estimate of the noise
variance called, 62, given by:

Z 62 (r —i,c — j).

(i,j)eW.

As a result,

g(r,e) = ar+ de+ @ + n(r, ¢).

N/N,

~2 ¢
= — 9
e =N +1 ©)
It can be shown that the slope facet model taken
over W(r, ¢) offers another way to arrive at an estimate

&2 of the noise variance ¢2:

(10)
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Eq. (10) can be easily verified by applying the expected
value operator to Eq. (3).

Comparison of the (center difference) variance 62
with the variance 62 of the reference neighborhood
W(r,¢) offers a test to detect whether the center re-
gion is likely to be corrupted or not. In other words,
if

o2
exceeds a suitably chosen threshold T, the center region
1s considered to be the result of a corrupted wavelet co-
efficient and investigated further. Exploiting the fact
that a corrupted wavelet coefficient will be represented
by the impulse response of its associated filter, a tem-
plate matching operation is used to finally decide if
corruption occurred and which subband it affected. If
an erroneous center region, W.(r,c), is detected, we
correct all associated pixels by estimating their origi-
nal values based on pixels in the neighborhood.

4 Experimental Results

We now present the results of an experiment ob-
tained using a Haar wavelet decomposition of the cam-
era man image. Quantization is performed by first sub-
tracting off the mean of each subband and then by
finding bits and bin widths for each uniform quantizer
such that, given an average precision of, for example,
4 bits/coefficient, the overall mean square error is min-
imized. Note that no entropy encoding has been per-
formed for reasons discussed earlier. The peak signal to
noise ratio (PSNR) for the camera man reconstruction
based on uncorrupted wavelet coefficients is 35.31 dB.
The wavelet coefficients are stored in sign-magnitude
format and corruption is simulated by randomly flip-
ping bits with a given (error) probability. Fig. 5 shows
a wavelet reconstruction taken over one level where 2%
of the underlying coefficients are corrupted. As a re-
sult, the PSNR. of the reconstructed (noisy) image fell
to 23.87 dB. Due to the Haar filter pair the resulting
error patterns after reconstruction are of size 2 x 2.
Note that since the LL-band contains most of the im-
age energy, related bit errors are more noticeable than
those resulting from corrupted LH-, HL-, or HH-band
coefficients.

The reconstruction result after error concealment is
shown in Fig. 6 where a decision threshold T' = 4
was used. We see that most of the corrupted areas
have been masked while most of the noticeably signif-
icant image details have been kept. The PSNR after
error concealment improved by approximately 6.0 dB
to 29.99 dB. However, some corrupted regions have not
been removed. This problem either occurs along edges
or when neighboring wavelet coefficients are corrupted.
In both cases the slope-facet model no longer serves as
a good reference for the underlying image region.



Figure 5: Reconstructed image with 2% corrupted
wavelet coefficients.

5 Discussion and Conclusions

A model-based approach to conceal bit errors af-
fecting wavelet coefficients has been presented. This
method works satisfactorily well for very low error rates
but cannot deal with high corruption rates. Two possi-
ble ways of improving the performance of the algorithm
are as follows: First, a two-step implementation can be
used where the LL-band is investigated separately. In
other words, one can make use of the fact that this band
resembles the original image and, as a result, apply a
similar model-based detection/concealment technique
to remove errors before combining it with correspond-
ing detail signals. Such a step might reduce the number
of corrupted LL-band coefficients and, hence, alleviate
the problem of hard-to-detect errors when corrupted
coefficients from different bands spatially coincide. An-
other possibility to reduce the number of corrupted
wavelet coefficients is to apply the present algorithm
more than once. While such a procedure reduces the
amount of visible corruption, it also increases the de-
gree of noticeable blurring.
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