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matrix factorizations appeared in 1974 [3]. However, until
recently there was no fast and stable updating algorithmDuring the past few years several interesting applications of

eigenspace representation of images have been proposed. These for the SVD [5].
include face recognition, video coding, and pose estimation. In the context of image analysis in eigenspace, this paper
However, the vision research community has largely overlooked makes the following contributions:
parallel developments in signal processing and numerical linear
algebra concerning efficient eigenspace updating algorithms.

• We provide a comparison of some of the popular tech-
These new developments are significant for two reasons: Adopt-

niques existing in the vision literature for SVD/KLT com-ing them will make some of the current vision algorithms more
putations and point out the problems associated withrobust and efficient. More important is the fact that incremental
those techniques.updating of eigenspace representations will open up new and

• We outline a low-rank SVD update algorithm whichinteresting research applications in vision such as active recog-
is efficient and numerically stable. Using this we suggestnition and learning. The main objective of this paper is to put

these in perspective and discuss a new updating scheme for a technique for adaptively modifying the number of basis
low numerical rank matrices that can be shown to be numeri- vectors and provide an error analysis.
cally stable and fast. A comparison with a nonadaptive SVD • We provide preliminary experimental results for the
scheme shows that our algorithm achieves similar accuracy case of 3D object representation using image projections.
levels for image reconstruction and recognition at a significantly Other interesting applications in vision are identified.
lower computational cost. We also illustrate applications to
adaptive view selection for 3D object representation from

Although SVD updating techniques have been used byprojections.  1997 Academic Press
several researchers in the past, to the best of our knowledge
this is the first time that a scheme is suggested for adap-
tively modifying the number of basis vectors.1. INTRODUCTION

Let us consider the following scenario: A camera is
mounted on a robot which explores a 3D object by viewingThe eigenspace representation of images has attracted
it from different angles, and builds an internal representa-much attention recently among vision researchers [10–16].
tion in terms of image projections. This is a slightly differ-The basic idea is to represent images or image features
ent formulation from the face recognition problem intro-in a transformed space where the individual features are
duced in [15] and later made popular by [16]. In all theseuncorrelated. For a given set of (deterministic) images this
cases, we need to be able to recognize an object from itscan be achieved by performing singular value decomposi-
projections only. We assume that image data are directlytion (SVD). The statistical equivalent of this is the Karhu-
used in building a representation, but the formulation isnen–Loeve transform (KLT), which is computed by diago-
valid for any set of image features extracted from the imagenalizing the autocorrelation matrix of the image ensemble.
data. As the sensor acquires each new image, the imageBoth are well-known techniques in image processing. How-
is analyzed to determine if it is a salient image (the imageever, they are computationally expensive.
saliency is measured by how much new information isSince computing SVD is expensive, there is a need for
embedded within or how different the image is from theefficient algorithms for SVD updating. In the updating
current eigenspace representation) and the current repre-problem, one is interested in computing the new SVD
sentation is updated accordingly. Since the updating algo-when a row (or a column) is added to a given matrix whose
rithm is based on computing the singular values of a matrixSVD we already know. The idea of SVD updating has
composed of images, we begin with a brief review of thebeen prevalent in signal processing for about two decades.

One of the first papers on the numerical issues of updating eigenimage representation.
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TABLE 11.1. Eigenimage Representation
Comparison of Algorithms

In the following discussion, we use the standard Euclid-
Authors Method Updateean 2-norm denoted by i ? i :

Murakami and Kumar (1982) BTB yes
Kirby and Sirkovich (1990) BBT no

ix i 5 !Ox2
i for x [ Rn. (1) Turk and Pentland (1991) BTB no

Murase and Lindenbaum (1995) iterative (BBT) no
This paper SVD of B yesThus, for a matrix B,

iB i 5 maxix i51 iBx i. (2)

methods for computing the SVD/eigendecomposition. But
Let hAi j denote a sequence of image vectors, obtained as is well known in numerical linear algebra [4], it is difficult

by row-scanning the two-dimensional images with m pixels to get robust implementations of such iterative methods.
in each image. Let Bi denote the matrix [A1 A2 . . . Ai ]. In this paper, we propose instead the use of a direct
Let « be a given tolerance and define the «-rank of Bi to update algorithm to compute the SVD of B̂i . This algo-
be the number of singular values of Bi greater than «. rithm has good numerical properties, as discussed in Sec-
Denote the «-rank of Bi by k. Therefore, if sj’s are the tion 2.3, and is as efficient as the approach of [10]. More-
singular values of Bi in nonincreasing order, then sk . over, for data sets with large k, a fast version of the
« $ sk11 . In many image processing applications, algorithm with time complexity O(mk) is available.
k ! i. Therefore, Bi can be represented efficiently by its Table 1 summarizes the algorithmic differences among
first k singular vectors and singular values. Denote the some previous work in vision and ours. Note that these
SVD of Bi by papers address different applications and it is not our inten-

tion here to compare those other aspects. From this table,
an important conclusion to be drawn is that there exists a

[U*i ] 3oi 0

0 [«]43VT
i

p 4 , (3) powerful technique from numerical linear algebra (fast and
stable SVD update) that has important bearings on many
vision applications. This is born out by the fact these tech-
niques have been rediscovered several times in the visionwhere Ui is an m 3 k matrix, oi is k 3 k diagonal matrix,
literature. There are several other papers concerning vari-and Vi is an i 3 k matrix. Note that Ui and Vi are matrices
ous pattern recognition applications of eigenspace repre-whose columns are the first k left- and right-singular vec-
sentations (for example, [11], Oja’s book on subspacetors, respectively.
methods [13]), but are not very relevant to our discussionNote that Bi can be reconstructed to « accuracy by
here. Table 2 lists some important differences betweenUi oiVT

i . That is iB 2 Ui oi VT
i i # «. The algorithmic re-

a previous updating scheme and ours in terms of whatquirement in many applications is to compute hUi , oi , Vi j
parameter the user specifies for the algorithm, how oftenefficiently. This can be directly computed from Bi by using
the SVD is incremented when the algorithm is running,standard SVD algorithms (e.g., Golub-Reinsch [4]). This
and whether the saliency of a particular image in the collec-has a complexity of O(mi2 ). Some researchers [10, 16] have
tion can be determined from the algorithm.suggested computing SVD by computing the eigendecom-

position of BT
i Bi . While this has the same complexity, its

2. UPDATING AN EIGENSPACE REPRESENTATIONnumerical properties are not as good. If Bi has condition
number problems, using BT

i Bi just amplifies the problems
If all N images of the data set are not available at the[4]. Nevertheless, in applications involving a large number

outset (as in an active sensing scenario), we will need toof images, computing the SVD of Bi can be too slow.
compute the SVD every time a significant new image isIn many situations (as in face recognition, database
obtained. If we did the naive thing and saved all the imagesbrowsing, video coding, and active recognition) hUi21 , oi21 ,
and computed a full-fledged SVD from scratch every time,Vi21 j is available and this can be used to speed up the
it would cost O(mN 3) time, which is too slow.computations. We can approximately compute hUi , oi , Vij

by computing the SVD of [Ui21 oi21 Vi21 Ai] 5 B̂i . This is
2.1. Adaptive Eigenspace Computation

the approach taken in [10] but they compute the SVD of
B̂i by computing the eigendecomposition of B̂T

i B̂i . This We now discuss a more efficient way. Let the left-singu-
lar vectors computed by the following incremental updat-costs O(mk 1 k3). While more efficient than computing

the SVD of Bi , this still suffers from potential numerical ing algorithm after obtaining i images be denoted by
Uki

, and let oki
denote the corresponding matrix of singularinstability [4]. Murase [12] advocates the use of iterative
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values, where ki is the number of columns of Uki
. Note Note that if Uki

and Vki
are square matrices then we can

that Ui can be different from Uki
and the effect of this easily diagonalize the first ki columns of B̂i11 and obtain

approximation is studied in this section. When we acquire a broken arrowhead matrix, whose SVD can be computed
the new image Ai11 we compute a new SVD, quickly using the techniques suggested by Gu and Eisenstat

[5]. But Uki
and Vki

are not square matrices. Notice that
[Uki

oki
VT

ki
Ai11 ] 5 U9o9V9T. (4) Uki

can be extended by adding the part of the new image
Ai11 which is perpendicular to Uki

. It turns out that this is
We now choose the integer ki11 such that the ki11 th all we need as far as Uki

is concerned. Now for Vki
we

singular value of o9 is the smallest singular value bigger extend it by adding a zero row and a zero column with a
than «i , where «i depends on « (the relation between « and one in the bottom right entry. These extensions leave the
«i will be developed further in Section 2.2). We then pick columns of the extended Uki

and Vki
orthogonal. Using

the first ki11 left singular vectors to form Uki11
and the these extensions, computing the SVD of B̂i11 can be

corresponding singular values to form oki11
. If «i does not reduced to computing the SVD of a broken arrowhead

depend on i it follows from elementary properties of singu- matrix. The details are given in the algorithm below.
lar values that ki11 $ ki , which is intuitively obvious. We
now state the algorithm more formally.

1. x r U T
ki

Ai11 ; x [ Rki31.
EIGENSPACE UPDATE ALGORITHM.

2. a9' r Ai11 2 Uki
x; a' r a9'/ia9'i.

U 5 A1 / iA1i, V 5 1, o 5 iA1i
For i 5 2 to N

3. Compute the SVD of 1oki
U T

ki
Ai11

0 aT
' Ai11

2 5 WLQT,[UoVT Ai ] 5 U9o9V 9T;
Find k such that s9k . «i $ s9k11 ;

where W, L, Q [ R(ki11)3(ki11).Let U equal the first k columns of U9 ;
Let V equal the first k columns of V9; 4. U9ki11

r (Uki
a')W.

Let o equal the leading k 3 k principal submatrix of o ;
End

5. V9ki11
r 1Vki

0

0 12Q.In practice there is no need to update the SVD for
every new image. Only those images which are significantly
outside the current object eigenspace, or those that cause

6. o9
ki11

r V.a large change in the singular values need be updated. We
now give more details about the computation, [UoVT

Ai ] 5 U9o9V9T, in the above algorithm.
It is straightforward to check that B̂i11 5 U9ki11

o9
ki11Let Uki

oki
VT

ki
denote an approximate low-rank SVD of

(V9ki11
)T; i.e., the above algorithm computes the SVD ofBi , where Uki

[ Rm3ki , oki
[ Rki3ki, and Vki

[ Ri3ki. Assume
B̂i11 . Once we have the SVD of B̂i11 we can make a rankthat Bi 1 Ei 5 Uki

oki
VT

ki
. We now show how to compute

decision based on a parameter «i11 . We discard all singularan approximate low-rank SVD of Bi11 5 (Bi Ai11 ) effi-
values (and associated singular vectors) which are smallerciently, using the available low-rank approximate SVD
than «i11 to get Uki11

oki11
(Vki11

)T, the approximateof Bi .
low-rank SVD of Bi11 . Let B̂i11 5 Uki11

oki11
(Vki11

)T 1Observe that
Gi11 . Then the matrix Gi11 contains the errors due to

Bi11 5 (Uki
oki

VT
ki

Ai11) 1 (Ei 0). (5) truncation of the SVD and also the round-off errors in-
curred in computing the SVD of B̂i11 .

We next look at the various factors affecting the run-Therefore we can concentrate on computing the SVD
of the matrix (Uki

oki
VT

ki
Ai11 ), which we denote by B̂i11 . time efficiency of the above algorithm.

TABLE 2
Comparison of Updating Algorithms

Saliency
Authors Method User-defined parameter Increment SVD determination

Murakami and Kumar BTB basis dimension every iteration no
(1982)

This paper SVD of B error measure as indicated by the yes
error criterion
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FIG. 1. Face reconstructions using a basis dimension equal to 20% and 10% of the image count. The basis sets were created with the incremental
and batch algorithms. (a) The original image; (b) incremental algorithm with 20% basis, residue error 0.000023; (c) incremental algorithm with 10%
basis, residue error 0.211824; (d) batch algorithm with 20% basis, residue error 0.084062; (e) batch algorithm with 10% basis, residue error 0.126791.

2.2. Flop Count manner the total cost of the algorithm is O(mnk2) flops.
This should be compared with the cost of computing the

Steps 1 and 2 of the algorithm can be computed in
SVD of B once, O(mn2) flops. If we use the fast and stable

O(mki ) flops, and they add up to O(mnk) flops for comput-
algorithm of [5], the total number of flops can be reduced to

ing the low-rank SVD of the entire matrix B.
O(mnk), though this will be useful only if k is large enough.

Step 3 involves the computation of the SVD of a broken-
In summary, the algorithm is about as efficient as possi-

arrowhead matrix. Using standard dense SVD algorithms
ble in the sense that its cost is a linear function of the

(see LAPACK manual [1]) this can be done in O(k3
i ) flops.

amount of data that needs to be computed. All that is left
So the total cost will be O(nk3) flops. If we use the fast

to be considered is its accuracy.
stable algorithm of Gu and Eisenstat [5] for computing
the SVD of broken arrowhead matrices the cost can be

2.3. Accuracy
further reduced to O(nk2). (But the overheads in the im-
plementation may make this worthwhile only for k bigger The two primary sources of errors are the round-off

errors incurred in computing the SVD of B̂i11 and the errorthan 100.)
Step 4 costs O(mk2

i ) flops if done in a straightforward from truncating the SVD. The standard algorithms for
computing the SVD (see the LAPACK manual [1]) andmanner. Again, this can be speeded up to O(mki ) flops

using the fast and stable algorithm, outline in [5]. Thus the the fast algorithm of [5] are backward stable. Therefore
step 3 in our algorithm is numerically stable. The potentialtotal cost is O(mnk2) flops or O(mnk) flops.

For step 5 the cost is O(ik2
i ) flops if done in a straightfor- source of instability is step 2, where we need to ensure

that a' is numerically perpendicular to Uki
. If a9' is veryward manner, and O(iki ) flops using the technique outlined

in [5]. The total cost is either O(n2k2) flops or O(n2k) small, then a' as computed may no longer be numerically
perpendicular to Uki

. This can lead to serious numericalflops respectively.
So we see that the dominant cost of the algorithm is the instability. One way to fix this problem is to monitor ia'i,

and if it falls below a certain threshold to reorthogonalizematrix multiplications. If they are done in a straightforward
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it against Uki
. Other options would be to use modified the accuracy in image reconstruction to that of the com-

plete SVD and demonstrates that similar performance canGram–Schmidt or QR type orthogonalization techniques.
In practice, if ia9'i gets smaller than «, it is usually safe to be obtained at a fraction of computational cost. For related

work in signal processing, see [2, 9].skip the updating of the SVD altogether. Since « is fairly
larger than the machine precision in our application, by

3. APPLICATIONSdoing this we have never observed any numerical difficult-
ies with our current implementation.

Previous research has already demonstrated that theOf more importance than the rounding error is the error
eigenspace approach is a powerful tool in recognition anddue to truncating the SVD. The error matrix Gi represents
pose estimation of objects from image projections [11, 15,both these errors. It is straightforward to show that
16]. Our objective is to illustrate the efficacy and efficiency
of the incremental eigenspace updating algorithm over the

iBi 2 Uki
oki

VT
ki

i # iG2 i 1 iG3 i 1 ? ? ? 1 iGi i. traditional batch algorithm. While the batch algorithm is in
some sense the best-case, it is computationally expensive.
Furthermore, the batch algorithm is not suitable for appli-We can assume that iGii is approximately equal to «i ,

the truncation parameter in the ith update. Therefore one cation in a dynamic environment because the inclusion of a
single new image into the image set can require a completewould like the «i to satisfy on

i51 «i P «. But the choice
«i P «/n can be overly conservative, leading to a large- recomputation of the basis set. The proposed updating

algorithm easily handles any number of new images inrank factorization. A better choice would be «i P «/Ïn.
The first set of experiments in the next section compares an incremental manner without recomputing the basis set

FIG. 2. Residue error for basis dimension equal to (a) 10% of image count, (b) 20% of image count, and (c) 50% of image count. These results
are for the test data. Dashed line: batch algorithm; solid line: incremental update algorithm.
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FIG. 3. Percent recognition for basis dimension 10% and 20% of image count. Dashed line: batch algorithm; solid line: incremental update algorithm.

from scratch. We demonstrate the application of this algo- while the more useful views are sampled finely. All of these
experiments use images represented as integer values inrithm to the problem of intelligent view selection, which

has applications in active vision. the range [0, 255], and « is the threshold supplied by the
user (t) times the number of pixels in each image.Three sets of experiments were conducted. The first

compares the reconstruction accuracy, recognition rate,
3.1. Incremental Update of the SVD vs Batch SVDand run time of the incremental update algorithm with

those of the batch algorithm (the standard SVD available The first set of experiments compares the reconstruction
in LAPACK). It is shown that the performance of the and recognition performance of the proposed incremental
incremental algorithm is comparable to that of the batch update algorithm with that of the batch algorithm. The
algorithm at a significant savings of the computation time. batch algorithm performs a single SVD on the matrix con-
The second experiment demonstrates how the incremental taining all images in the ensemble. Hence, it represents
eigenspace updating algorithm consistently selects the ob- the best case scenario in terms of recognition and recon-
ject views useful for representing the object. These experi- struction performance and serves as the baseline for com-
ments show that view selection is robust as initial pose parison.
varies. The final experiments show how this view selection The U.S. ARMY’s FERET face image database was
process can be made adaptive, sampling the ‘‘view space’’ used in this set of experiments. The particular set used
as a function of the object image complexity. The views consists of 137 images from FERET plus one from a local

database (the army database images are not available forless useful for object representation are sampled coarsely,

FIG. 4. Computation time for basis dimension 10% and 20% of image count. Dashed line: batch algorithm, solid line: incremental update algorithm.
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FIG. 5. Test objects at 0, 90, 180, and 2708, respectively.

publication). All the face images were normalized by regis- number of images in the collection. Figure 1a shows one
view of the image added to the FERET database. Thistering the eye locations manually without changing the

aspect ratio. Two frontal views of each person are available, image is also used in constructing the basis. The recon-
structed images with 10% and 20% basis (13 and 27 bases,one of which is used during the training phase in con-

structing the basis and the other for testing. respectively) using the incremental update and the batch
update are shown in Figs. 1b–1e. The visual reconstructionIn the following experiments, comparisons are made

using basis sets whose dimensions are 10% and 20% of the quality for the incremental algorithm is comparable with
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FIG. 6. Salient views of Toy 1.

that of the batch one, as the examples show. From our space represented by the basis images and computing the
average per-pixel residue error. As can be seen from theexperiments, a 20% basis set is often sufficient to recon-

struct images with an acceptable visual quality. figure, the residue error decreases when the size of the
image ensemble increases. The performance of the incre-Figure 2 shows the average reconstruction error as a

function of the basis dimension, where the basis dimension mental SVD algorithm closely mimics that of the batch
algorithm and the difference in average residue error wasis 10%, 20%, and 50% of the size of the image collection,

respectively. The average reconstruction error was com- generally about 10% for different basis dimensions. For
some images in the collection, the incremental algorithmputed by projecting images in the ensemble onto the sub-
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is likely to provide a better reconstruction than the batch set were then computed. The feature vectors of images in
the test set were computed and the distances between thealgorithm. Our experiments have shown that the images

selected as salient by the incremental algorithm are likely two sets of feature vectors were calculated to determine
the matches between images in the two data sets. Percent-to have smaller residual error than if they had been recon-

structed using the batch algorithm. This has been found ages of correct associations of the images in the training
and test sets are plotted in Fig. 3. As can be seen fromto carry over to individuals selected as salient as well, which

may explain why the reconstruction shown in Fig. 1b is this figure, the recognition rate of the incremental algo-
rithm again closely mimics that of the batch algorithm. Thebetter than the one in Fig. 1d. The significant decrease

evident between the two curves shown in Fig. 2c shows recognition rate decreases when larger image databases are
used; however, the difference between the two methods isthat as the incremental algorithm is allowed a larger basis

set, it approaches the performance of the batch algorithm. about 5–10%.
The slight drop in the reconstruction and recognitionThis shows experimentally that the roundoff error is negli-

gible in comparison to the effects of excluding the nonsa- accuracy of the incremental algorithm is made up by the
significant savings in the computation time over the batchlient images when calculating the basis set.

Figure 3 compares the recognition rate as a function of algorithm. This will be significant for any meaningfully
large database. Computation times for the batch algorithm,the basis dimension for the incremental and batch algo-

rithms. The recognition rate was calculated as follows: We which did not include efficient adaptive basis computation,
are compared to those of the incremental algorithm. Thedesignated one set of 138 frontal facial images as the train-

ing set and the other set as the test set. Images in the results are plotted in Fig. 4. As expected, this new algorithm
computes the SVD much faster than the older batchtraining set were used to compute the basis images, where

the number of bases used equaled 10% and 20% of the method when the basis dimension is 10–20% of the image
count. When the basis dimension becomes a much largerdatabase size. The feature vectors (i.e., the projection coef-

ficients onto the basis images) of the images in the training percentage, the batch algorithm will be faster. However,

FIG. 7. Salient views of Toy 5.



330 CHANDRASEKARAN ET AL.

were acquired. At times, the representation may need to be
updated. The representation changes under the following
three conditions: (1) when the dimensionality of the cur-
rent basis image space is not sufficient to encode the new
image, (2) when the singular vectors are rotated, or (3)
when the addition of the new image affects the singular
values only. In the first case the number of basis images
increases by one. Our experimental studies indicate that
when a new representation is required, the dimensionality
also usually goes up. This suggests the following simplifica-
tion to the update algorithm: check to see if an update is
necessary, and if necessary, update the representation and
enlarge the basis dimensionality by one. This check can be
done by comparing the reconstruction error to a threshold.
The threshold is a measure of the per pixel mean squaredFIG. 8. Basis dimension as a function of threshold. Dot-dash line: Toy
error allowed in the most poorly reconstructed image in2; dashed line: Toy 6; short solid line: Toy 7; long solid line: face database.
the set. Hence, only those images that provided significant
new information are used in constructing a new, larger
representation. We call these images salient views of the

for large databases, constructing a basis of dimension larger corresponding object. We used this simplified update algo-
than 10–20% of the total image count will not be feasible. rithm in our experiments.

One approach for constructing the eigenspace represen- A total of seven objects (Fig. 5) were digitized with 36
tations for large databases is to use random selection to images per object. Figure 6 and Fig. 7 show the salient
pick a subset of the images. The hope is that this randomly views recorded for two of the objects. The same threshold
chosen subset will be representative of the whole image was used to select the salient views for both objects. As
set, and that a basis set created using this subset of images can be seen from these figures, the number of salient views
will perform well for the whole image data. The proposed depends on the complexity of the imaged object. Toy 1
incremental updating algorithm has computation times has more complexity in its structure than symmetric Toy
comparable to these other methods. The proposed method, 5, and more views are selected as salient. The salient views
however, provides an adaptive means for selecting a more selected for Toy 1 include only one back view of the object;
representative data set for computing the basis. Every im-
age in the database is examined and only the most useful
views are selected by the updating algorithm. TABLE 3

Testing has shown that recognition rates and average Toy 2 Statistics
residual error are insensitive to changes in the ordering

Start angle Basis Max. residue Computationof the images, although the exact residual error for any
Threshold (8) dimension error time(s)particular image may change. This is presented more sys-

tematically in the next section when the image set is consid- 0.09 0 2 0.080 3.73
90 1 0.092 2.52ered to be circularly ordered. Varying the initial image in

180 1 0.096 2.54this ordered set has little effect on the final basis dimension
270 2 0.087 3.80or average residual error. 0.08 0 3 0.077 6.40
90 1 0.092 2.53

3.2. Salient Views and Basis Dimensions 180 2 0.090 3.27
270 3 0.075 6.90

The previous experiments illustrate that the incremental 0.07 0 5 0.076 16.35
update algorithm performs nearly as well as the best-case 90 3 0.089 6.93

180 5 0.079 15.51batch algorithm. The rest of our experiments illustrate
270 4 0.072 10.58the strengths of the incremental update algorithm. These

0.06 0 11 0.073 98.82experiments are inherently incremental and cannot be ef-
90 8 0.079 43.50

ficiently performed with the batch algorithm. 180 15 0.058 225.32
The incremental algorithm consistently selects the most 270 13 0.061 154.25

0.055 0 20 0.053 483.43useful views for creating a basis set. To illustrate this, test
90 20 0.050 483.81objects were placed on a rotation stage and their pictures

180 19 0.059 425.70were taken every 108 of rotation. Eigenspace representa-
270 19 0.055 428.82

tions were constructed by examining the images as they
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TABLE 4 near the desired threshold, even though each view is only
Toy 6 Statistics examined once, often before the full basis set is established.

Start angle Basis Max. residue Computation
3.3. View Selection in a Dynamic EnvironmentThreshold (8) dimension error time(s)

In the previous experiments every image in the set was0.09 0 2 0.106 3.27
examined, which may be wasteful. When one view of an90 3 0.090 6.35

180 2 0.093 4.09 object on the rotation stage is found to be well represented,
270 2 0.105 3.71 it is unlikely that the view 18 away will be salient. Consider

0.08 0 5 0.092 15.53 now a camera actively positioned about a stationary object.
90 7 0.077 33.01

The camera’s next position is found from its current posi-180 6 0.084 23.90
tion by considering the changes in the eigenspace represen-270 6 0.085 22.32

0.07 0 17 0.074 313.13 tation. The camera can now adapt to the view space, skip-
90 14 0.076 185.90 ping over any number of uninteresting views to examine

180 15 0.076 221.09 only the salient views of the object. The step size between
270 16 0.070 259.44

one view of the object and the next is based on how inter-0.065 0 26 0.061 1019.95
esting the current view is and on how well it is already rep-90 20 0.076 488.61

180 25 0.063 904.05 resented.
270 25 0.064 913.47 Our experiments simulated the adaptive positioning of

the camera in increments of no less than 18 about an object.
The camera was placed at an arbitrary starting point facing
an object. Then the system started acquiring objects ini-

all others are frontal or profile views. Note that the only tially at 18 rotation. If the new image was close to the
information being used are the gray-level pixel intensities. current eigenspace representation, the step size for the
For our digitized objects, a good choice of the threshold rotation was doubled. On the other hand, if the distance
in the reconstruction error appears to be in the range of the current image from the eignespace representation
0.06–0.1 per pixel. was large, then the representation was updated by includ-

For the next experiments, three of the objects were digi- ing this current view and the step size was halved. Figures
9 and 10 show the step size as a function of angle fortized at 18 of rotation for a total of 360 images per object.
different starting angles. The step size is large in well-Images of Toy 7, a stuffed dinosaur, cannot be reproduced
modeled areas and small in areas with significant new infor-for copyright reasons. Figure 8 shows the basis dimension
mation. Note that the step size seems to be large in theas a function of threshold (i.e., desired representation accu-
same regions of each graph. For instance, in the TOY 6racy). As expected, it clearly indicates that the basis dimen-

sion grows as the desired reconstruction error is reduced.
These results are the average of measurements made at
four different starting angles. These results meet our intu-
itive expectations, since Toy 2 seems to be the ‘‘simplest’’
object and it requires the fewest bases for reconstruction
to within a certain error. Note that the face images have a
much larger basis dimension requirement than the rotating
objects. This is because the face-to-face variation is larger
than the view-to-view variations for the objects. A more
detailed set of results are shown in Tables 3 and 4. Con-
sider, for example, Toy 2 with a threshold of 0.055. The
basis dimension is 19 or 20 for starting views separated by
908 about the object. Nineteen or twenty salient views are
needed to represent this object to within a reconstruction
error of 0.055 regardless of from which angle the object is
first viewed. In most cases the choice of the starting angle
has little effect on the number of bases chosen for a fixed
threshold. Different starting angles may change the resid-
ual error for any particular image, but the average residual
error over the image set remains fairly constant. Note also

FIG. 9. Toy 2 step size for different starting angles.that the maximum residual error in reconstruction is always
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Our current research seeks to extend these concepts to
video coding and image database problems.
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