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Abstract-—— Progressive-resolution transmission is of
significant practical importance for online image li-
braries. When combined with reversible image com-
pression, it provides a particularly promising frame-
work which not only contributes to lower storage over-
head but also to smaller transmission costs.

We proposc an cfficient lossless compression scheme
for RGB color images. It consists of a modified re-
versible subband transformation which is followed by
a reversible color decorrelation technique. Switching
the (traditional) order of wavelet and spectral trans-
form offers the opportunity to support progressive—
resolution transmission of spectrally decorrelated
wavelet coefficients without compromising compres-
sion performance.

[. INTRODUCTION

With advances in storage, processing, and com-
munications technologies, the creation of large digi-
tal image collections has become a practical reality.
Applications of such image libraries can be found in
many areas where they provide picture support for
spatially referenced data sets [1], or improve the ac-
cessibility of large photograph collections [2].

Image databases are often designed for applica-
tions where images are archived for future process-
g or analysis. In these cases lossy compression
methods are often objected to as users fear the ir-
reversible loss of information. Some of the most
effective methods for reversible compression involve
linear predictive coding [3]. This form of compres-
sion is usually defined for a single resolution and
the image can only be recovered in its entirety. On
the other hand, a multiresolution approach based on
progressive-resolution transmission is more suitable
for interactive exploration and browsing of digital im-
age databases. Among several reversible multireso-
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lution representations, the S-transform [4], the RT'S-
transform [5], and the S+P-transform [6] ave partic-
ularly well suited for image database applications.
In this paper a modified reversible wavelet transform
is introduced first. Even though it is generally ac-
cepted that monochrome wavelet techniques can be
used to separately compress image bands, such an
approach fails to take into account potential correla-
tions present between bands. As a result, a reversible
color decorrelation technique is added next to exploit
spectral redundancy.

This paper is organized as follows: In Section LI,
we revisit the reversible (intraband) wavelet trans-
form. The description of a new spectral decorrelation
technique follows in Section III. [n Section 1V, com-
puter simulations are provided to demonstrate that
switching the order of wavelet and spectral trans-
form offers the opportunity to support progressive
resolution image reconstruction without compromis-
ing compression performance. Finally, Section V dis-
cusses our results and offers some conclusions.

1I. REVERSIBLE WAVELET T'RANSFORM

One important difference between lossy and re-
versible compression is that the latter must not dis-
card any information while the former can greatly
benefit from such a strategy to improve its compres-
sion efficiency. In other words, while lossy compres-
sion provides the freedom to quantize transform coef-
ficients to some smaller set, a good reversible image
transform must limit the maximum number of bits
required to represent each pixel in the transformed
image.

The S-transform, which i1s similar to the Haar
transform {7] reduces the necessary data precision
by making intelligent use of rounding operations. It
transforms an input image zo[m, n],m =0,..., M —
1,n=0,...,N —1, with M and V even, into four
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subbands denoted by LL, LH, HL, and HH. Since the
original image lies at the bottom of a pyramid decom-
position, it carries the index zero. Due to truncation,
the maximum number of bits required to represent
the LL-band, composed of local averages, does not
change. The detail signals, which comprise positive
and negative integers require more bits.

The rounding operations introduce a nonlinearity
into the S-transform which produces a noteworthy
side-effect. Since usually only truncation operations
are used, fractional parts are always discarded. As
a result, the transform becomes biased, i.e., local
means as computed by the S-transform are on the
average smaller than those obtained without trunca-
tion. A simple solution to this problem can be found
by realizing that the S transform is only one (sepa-
rable) example of a whole family of rounding trans-
forms. To balance the roundoff error one can apply
a rounding up operation along the image rows while
using the truncation operation along the columns.

As shown in Eq. (1), we obtain a balanced S-
transform by truncating averaged column means.
T'he local column averages are computed according to
Eq. (2) where a rounding up operation is applied to
the mean of neighboring row pixels. More precisely,
LL pixels zg+1[m, n] at successive decomposition lev-
els k + 1 are obtained as
Te[2m] + &p[2m + 1] ‘
e T ()
where the (rounded up) averages Z;[r] at row r and
level k are computed via

w7, 2n] + 2plr, 2n+ 1]1
5 )

Tpy1lm,n] = |_

Zp[r] = | (2)

The balanced 5-transform alternates between op-
posite rounding operations along the rows and
columns and achieves an unbiased (“balanced”)
roundoff error while the remaining LH, HL and
HH subbands (wavelet coefficients) are computed in
the traditional (separable) way. The balanced S-
transform yields lowpass coefficients which can be
modeled by a sum of (true) local mean and additive,
ZEeTo Inean noise.

The weakness of the (balanced) S -transform is the
comparatively large entropy and energy of the de-
tail (or wavelet) coeflicients when compared to other
subband transforms. However, an interband predic-
tion method independently proposed by Said [6] and
Kuroki {9] can be used to significantly improve decor-
relation between detail coeflicients, thus improving
coding efficiency.

Interband prediction, as explained for the 1-D case
and shown in Fig. 1, uses the derivative of the low-
band coefficients at decomposition level k, denoted
by Azg[n]. where

Azgn] = z4n — 1] = xg4n], (3)

to predict the high-band (or wavelet) coefficients
dg[n] via

L,
di[n] = Z oy Azgn+ 4. (4)

i=—Lg

Finally the prediction difference dy [n] is formed by
subtracting rounded predictor outputs from the high-
band coefficients:

de[n] = dy[n] — [de]n]] (8)
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Fig. 1. Interband prediction in 1-D: The predictor
P(z) is used to predict detail signals d1[n] at, e.g.,
decomposition level 1 from differences between as-
sociated approximation coefficients x1[n].

If we ignore rounding operations and Interchange
(linear) predictors P(z) with down-samplers/up-
samplers, then interband prediction can be explained
in terms of an equivalent filter bank. Here the equiv-
alent analysis highpass filter Hy(%), given by

Hi(z) = Hy(z) — P(z))Ho(2) (6)

replaces the original highpass filter H1(z), and the
equivalent synthesis lowpass filter (/y(z), defined as

Col2) = Go(2) + P10 (2) (7)

substitutes for its original counterpart Go(z). While
Hi(2) can now be designed to better decorrelate in-
put signals, care must be taken to ensure that the
synthesis lowpass filter Cig(z) still interpolates well.
With Ho(z) and Hi(z) taken to be S transform fil-
ters, the equivalent analysis highpass filter JL(;) 18
given by

=1 2 La
G

Hy(z) = (v = 1) 5 a2 TE 1] (8)

i=—Lg

Similarly the equivalent synthesis lowpass (fr’o(z’) fol-
lows as

Ll .
E a,z_z.-f—Zz}' (9)

t=—Lg

Gole) = (1 +p- E1

Choosing ag = aq = i for example, results in the
RTS transform. 'Lhis prediction idea also connects to
average-interpolation as introduced by Donoho [10].
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1I1. REVERSIBLE COLOR I'RANSFORMS

When compressing images with spectrally corre-
lated components, color conversion can be very ben-
eficial. Traditional transformations from the RGB
domain to, e.g., the YUV or YIQ space are, how-
ever, often irreversible when arithmetic precision is
limited.

Recently a lossless color transform has been pro-
posed which takes N -bit RGB components and pro-
duces an N-bit Yr component and N+1 bit Ur and
Vr channels [12]. These can be thought of as (re-
versible) approximations of YUV color components
[13]. Although for most images investigated an im-
provement of over 10% was reported, the color trans-
form suggested cannot be directly applied to lossless
progressive-resolution transmission. In other words,
since a (nonlinear) spectral transform is followed by
a (nonlinear) spatial transform, the latter process-
ing step has to be reversed first before the inverse
color transformation can be taken. Therefore, loss-
less progressive resolution transmission cannot be di-
rectly supported since the inverse color transforma-
tion can only be taken at the final resolution.

As a result, a modified color compression scheme
is needed if progressive resolution transmission is to
benefit from additional spectral decorrelation. We
propose a new method shown in Fig. 2 where the tra-
ditional order of interband and intraband transform
has been interchanged. A reversible wavelet trans-
form is used to first (intraband) decorrelate the red,
green, and blue color bands before an (interband)
rounding transform is applied to the color compo-
nents of each subband.

More precisely, let y[m,n] be a vector of sub-
band coefficients comprising the red, green, and blue
(integer) transform coeflicients r[m, n], g[m, n}, and
b[m, n], at spatial location [m, n]:

(10)

Then the forward (color) rounding transform of an
(integer) vector y[m, n] can be defined as

y[m, n] = [r[m, n] g[m, n] b[m, n}]".

z[m, n] = {Ry[m:n”, (11)
while 1ts inverse transform is given by
ylm, n] = [R‘lz[m, n]J. (12)

Here [.] and |.| denote rounding up and rounding
down operations which take the nearest larger integer
value and the nearest smaller one, respectively.

A sufficient condition for the transform to be re-
versible is that the non-singular rounding matrix R.
has the following properties [8]:

1. All its elements are integers except in the first

row where they have to add up to one.

2. The sum of all (integer) elements in each of the
other rows has to be zero.

We chose the following R such that our results can
be directly compared to those presented in [12]:

0.25 0.50 0.25
R = 1 -1 0
0 —1 1

(13)

Although the spectral transforms arve formulated
slightly differently, a cloge look reveals that both are
equivalent. At this stage the main difference between
both methods is the order of wavelet and color trans-
forms.
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Fig. 2.  Multiresolution color transform scheme: A

reversible (intraband) wavelet {or subband) trans-
form (RWT) is performed first. It is followed by a
spectral (interband) transform (ST) further decor-
relating subband coefficients along the spectral di-
mension. [inally all spectral components of the
color—transformed subbands can be entropy en-
coded individually.

1V. EXPERIMENTAL RESULTS

In this section we follow the classical approach to
lossless compression where spatial decorrelation is
performed first and entropy coding of the decorre-
lated signals is applied next. Two different reversible
transforms are investigated. 'I'hey consist of separa-
ble reversible 2-1) wavelet transforms taken over six
levels which are followed by integer spectral trans-
forms (ST). The two transforms employ the same
spectral decorrelation method but differ in the pre-
diction schemes used. They are specified as:

¢ RWT 1. «; =0, Vi (balanced S transform,)
¢« RWT 2: ag = oy = 1/4 (RTS transform.)

The compression performance is assessed by mea-
suring the total zeroth-order entropy Hype. 1t is cal-
culated over all spectral components (u, v, w) of sub-
bands at all decomposition levels &k € {1, ..., L}.
Subbands carry two subscripts & and s. The former
denotes the decomposition level, while later indicates
the spectral component. Since individual subband
entropies contribute to Hy, according to the relative
size of their associated subbands, they are weighted
accordingly:
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i > H(LLpy)

sefu,v,w)
|
S Y
k=1 se{u,v,w)
+ > H(HLgy)
sef{u,v,w)

+ oy H(HHL))L

s€{uv,w)

Hige =

(14)

Table 1 shows the results obtained for a set of six
different test images. "Lhe second (fourth) table col-
umn contains entropies (in bits/coefficient) obtained
using the RW'T 1 (RWT 2) without any subsequent
spectral transform. Column three (five) provides re-
sults when RWT 1 (RWT 2) is followed by the spec-
tral transform specified in Eq. (13).

TABLE T
ENTROPY COMPARISON

RWT 1 RWT 2

Images | no ST | with ST || no ST | with ST
barb 16.59 10.29 15.46 12.37
boats | 14.23 3.95 13.50 11.00
fruits 8.65 9.01 9.15 9.41

gixl 14.13 9.13 13.02 11.16
zelda | 13.25 8.54 12.44 10.60
gold 15.25 9.85 14.73 12.43

V. Di1scussIoN AND CONCLUSIONS

Several observations can be made: First, without
any spectral transform RWT 2 generally outperforms
RWT 1. This could be expected since RWT 2 is based
on a hetter highpass filter. However, the results
change with the application of the spectral transform.
Now RWT 1 yields significantly lower entropies than
RWT 2. Although spectral decorrelation is usually
beneficial to lower the entropy of color pictures, the
same cannot be said for the “fruits” image. There a
statistical analysis reveals little correlation between
color components which explains why the spectral
transform is counter productive.

A statistical analysis, furthermore, shows that
RWT 1’s short, two-tap highpass filter generates sub-
band color coefficients which are more strongly cross
correlated across different color bands than in the
case of RWT 2. It is exactly this cross correlation
which the subsequent spectral transform can greatly
benefit from. Note, however, that even after the spec-
tral transform, the resulting subband color compo-
nents are not completely uncorrelated.

We presented a reversible multiresolution trans-
form for the progressive-resolution transmission of
intraband and interband transformed color images.
Experimental results indicate that our approach of-
fers a remarkable decorrelation potential given its low
computational complexity. Further work is necessary
to evaluate how well our approach performs when an
entropy coder is added.
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