Image Segmentation via Functionals Based On Boundary Functions
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ABSTRACT

A general variational framework for image approximation
and segmentation is introduced in which the boundary
function has a simple explicit form in terms of the approxi-
mation function. At the same time, this variational frame-
work is general enough to include the most commonly
used objective functions. Since the optimal boundary func-
tion, that minimizes the associated objective functional for
a given approximation function, can be found explicitly,
the objective functional can be expressed in a reduced
form that depends only on the approximating function.
From this a partial differential equation descent method,
aimed at minimizing the objective functional, is derived.
The method is fast and produces excellent results as illus-
trated by a number of real and synthetic image problems.

1 INTRODUCTION

In this paper a general variational framework is pre-
sented for image segmentation and approximation. In addi-
tion to several new results, one of the main contributions is
in simplifying and systematizing approaches that had pre-
viously been considered separately, especially those with
Mumford-Shah objective functionals [8],[9] and those
considered by Geman and others [4],[5],[6]. The common
framework for these approaches also makes it much easier
to do comparative studies of competing systems.

To set the stage, suppose that we are given a blurred
image g over a domain Q:

8 = Aug+m 1)

where A is the blurring operator, u; is the unblurred
image and 1M is the noise. One approach to segmenting and
approximating such an image consists of finding an
approximation # and a boundary set K that minimizes an
objective functional of the form

E(u,K) =w, [ (Au-g)"+w, [ [Vul"+w,[do ()
Q\K QK K

where the last integral term corresponds to the length of
the boundary. The scalars w,, w,, and w; are weighting
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factors that determine respectively how closely Au approx-
imates g , the smoothness of u and the extent of the bound-
ary. Without loss of generality we may assume that
w, = 1. Functionals of this type are often referred to as a
Mumford-Shah (MS) functionals. See {7] p.24, [8], and [9]
for details.

Unfortunately numerical procedures for minimizing
the MS functional encounter bookkeeping problems associ-
ated with tracking regions and their boundaries. These
problems can be traced to the binary nature of the boundary
description as embodied in the boundary characteristic
function, which takes on the value 1 on the boundary K
and O elsewhere. Binary descriptions of boundaries may be
appropriate in some special cases but for most problems the
transitions between regions can occur over several pixels
rather than abruptly. Moreover the mathematical view of
the boundary as the differential of a region underscores the
inherent sensitivity of the boundary description process;

. this is entirely analogous to the sensitivity of derivatives
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with respect to noise.

For these reasons, it often is appropriate to specify
boundaries with a function B taking continuous values
between 0 and 1. Such a function might be viewed as a
probability boundary description but we do not explore that
issue. Instead our main concerns are utility and ease of
numerical computation.

To accommodate a continuous boundary function B,
the MS functional could be recast as

(,B) =w, [ (Au-g)"(1-B)" +
Q

w, | IVu|® (1= B) 2+w3jB2 ®3)
Q Q

Here we have replaced the integrals over Q\K by inte-
grals over £ with integrands multiplied by (1 - B) g , the
idea being that since B= 1 near K, the integration of terms
times (1-B) ? over K is nearly 0. Similarly the boundary
length integral has been replaced by the integral of B

The rest of this paper focuses on minimizing a wide
class of objective functionals that includes (3) as well as
functionals of the type considered by Geman and others.
Aside from the simplifications that result from using a
common theoretical framework to compare competing



methods, the main contributions of this paper can be
summarized as:

1. A closed form solution is derived for the optimal
boundary function B associated with a given approximation
function u. The explicit form of the boundary function can
then be used to reduce the objective function to a form in
which the minimization problem can be recast as an equiva-
lent PDE.

2. The general framework used in this paper allows one
to compare different objective functions of the MS or
Geman type for least squares approximation (L, norm) or
the total variation (L; norm) approach of Osher and Rudin
[10],{11].

3. A PDE descent method is used that is significantly
faster than stochastic search algorithms, and as the experi-
mental results indicate, the results compare favorably with
existing methods.

4. The extent of the boundary is influenced by the terms
(1 ~B)2 and B® in the objective functional. One could
also work with (1-B)" and B' for any value y>1.
However, the case v = 2 is sufficiently general because
there is an equivalence between the case of arbitrary y> 1
and the case ¥ = 2 with a modified residual function [2].

In the next section we briefly review the related work
in the literature, followed by a discussion of different objec-
tive functionals. This is followed by a short description of
the numerical implementation and experimental results.

2 REDUCIBLE OBJECTIVE FUNCTIONALS
2.1 Relation to Related Work

There is a significant amount of related work in image
processing and vision. Early work in this area dealt with
scale space decompositions induced by Gaussian smooth-
ing operators and the motion of edges (as identified with
zero-crossings of the Laplacian) in scale space.

Identifying spatial discontinuities is helpful in many
applications such as segmentation, optical flow, stereo, and
image reconstruction. The concept of a line process is use-
ful in studying these problems as one of regularization. The
binary line process was introduced by Geman and Geman
[4] where the authors considered simulated annealing based
algorithms for achieving the global optimization. Since
then several modifications of the original scheme have been
suggested. Blake and Zisserman [1] formulated the same
problem as minimizing an objective functional which
enforces smoothness while eliminating the binary line pro-
cess. See also {3], [6], [12]. Some of these recent works
involve analog or continuous line processes.

Common to all these algorithms is an objective func-
tional that:

(a) enforces closeness to the original data by including
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terms such as (Au—g) 2,

(b) promotes local smoothness away from edges by
including terms depending on [Vl .

(c) limits the extent of the boundary.

2.2 A General Framework

Consider now the following generalized form of the
Mumford-Shah (MS) functional (3)
E(wB) = | r(1-B)>+B’ (4)
Q
where the residual term r depends on Au—g as well as

Vu . For our purposes we have found the following form of
r to be most useful

2
r=w (Au—g)" +w,|Vy|

&)

but more general forms of r are also considered below.
Functionals of this type have the big advantage that the
optimal boundary function B can be found explicitly for
any nonnegative residual function r: independent of the
form of r we can show that, for a given function u, the
function B that minimizes E (u, B) is given by

r

T 1+

= (0)
We denote this optimal boundary function by B = B (u) .
This allows us to eliminate B from the objective functional
and (after some simple algebra) we are led to the equivalent

problem of minimizing the functional
E(u) =E(u,B(u))
r
E() = | +— ™

It is interesting that this reduced functional is equal to the
L, norm of the optimal boundary function B ; that is mini-
mization of the reduced functional is really the same as
minimizing the L; norm of B subjectto B = r/ (1 +7) .

2.3 Geman Type Functionals

A similar reduction procedure is possible with func-
tionals of the type considered by Geman and others
(4],[51,[6]. In [6], Geman and Reynolds looked at objective
functionals depending only on the approximation function
u of the form

H(w) = YMAu-g)"+30(Dc(w)/8) ()
s C

where A and A arc weights, S is the set of pixels indices,

C is the set of cliques (or neighboring pixels), D . is a dif-

ference function akin to a directional gradient, and ¢ is a

specified function. For cxample, in [6], Geman and Rey-

nolds used

1
Lx]

o(x) = ®

1+



since this function was empirically noted to have “yielded
consistently good results.”

One can recast this type of a functional, referred to as
the Geman type functional in the following discussion, in
the form

G(u,B) = jwl(Au—g)2+jw2||vun(1—3)2+sz (10)
Q Q Q

As in the case of MS functionals, the optimal boundary
function is given by B = r/ (1 +r) with r = w,|Vu|.

The connection between this functional and (8) can be
seen by substituting B (u) into G to get

G(u,B) = J.w1 (Au—g)2+J¢(w2||Vu[[) +C 1D
19 Q

where the constant C = | 1 and ¢ (x) = -1/(1+1]) .
Thus this functional difféfs only by a constant from the
integral form of the functional (8) for the choice
¢ (x) = =1/(1+|x]) . (Note the slight difference how-
ever in that our reformulation of the Geman functional uses
Vu to measure approximation smoothness rather than sep-
arate terms for du/dx and du/dy.)

Explicit formulas for the optimal boundary term make
it easier to gain insight into the expected behavior of the
segmentation algorithm. For example, the optimal bound-
ary functions for the MS functional (4) and the Geman
functional (8) are both given by B = r/ (1 +r) where

= Mumford-Shah

w, (Au—g) 2y w, ||V
w, |V

Tys

r Geman

From this we see that the Geman optimal boundary func-
tion does not include the approximation error term
(Au-g) % That is, it derives all of its boundary informa-
tion from the gradient 02f the approximation function u.
Since the term (Au —g)~ measures the “residual noise” in
the approximation we expect that the Geman boundary
function should be smoother than the MS boundary func-
tion. We also see that, for the same function u and the sarhe
gradient weight w, , the MS residual 7, is larger than the
Geman residual r; . Consequently, By,¢ 2 B; .

However, the increased smoothness of B, over By
and the inequality B, ;> B; assumes that the same
approximation u used in determining r,, and r;. In gen-
eral it is not the case that the optimal approximation func-
tion u is the same for the MS and Geman functionals.

3 Numerical Implementation

The previous sections discussed various functionals for
approximating and segmenting images. These functionals
contain terms related to the approximation error and the
smoothness of the approximation as well as the extent of
the boundary. Once the form of the functional has been
selected, the nontrivial problem of finding the minimizing
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approximation u has to be addressed. Typically the desired
approximation is an equilibrium solution of a nonlinear dif-
fusion PDE with certain boundary conditions. A general
procedure for finding these PDEs is outlined in [2].

To illustrate, suppose that we wanted to minimize a
functional of the form

E(g, u) =jg(u—g)2+vu~vu (12)
where g is the given image and u is an approximation of
g . The minimizing approximation u for this functional sat-
isfies the ellpitic equilibrium PDE

Au=u-g (13)
du/on = 0 on dQ 14)

where Au is the Laplacian of u and du/dn denotes the
normal derivative. Numerically we can either solve for the
equilibrium solution directly or follow u as a function of ¢
from an initial approximation, such as u, = g, by integrat-
ing the diffusion PDE

u,

7 —u+ Au (15)

subject to the Neumann boundary condition (14). Starting
from the initial condition u; the image u evolves as
t — oo toward the equilibrium solution. A similar proce-
dure applies for the reduced form of MS functionals or the
Geman type functionals (see[2] for details.)

Once we have defined a residual function and obtained
the corresponding PDE for u, we then use Euler's method
to integrate the descent PDE and halt the integration when
the decrease in the value of the objective functional
becomes less than a user supplied tolerance (typically, 1-
5% in our experiments).

4 Experimental Results and Conclusions

Figure 1(a) presents a piecewise constant image simi-
lar to an example considered by Richardson in [13], but
with additive Gaussian noise. Figures 1(b) and 1(c) show
respectively the approximation function # and the bound-
ary function b for the MS functional. It is interesting that
the associated Geman approximation function u for the
same parameter choices is nearly identical as seen in Figure
1(d), but the Geman boundary function in Figure 1(e) is not
as noisy as the MS boundary function.

There is also another approach, involving iteration,
that can be used to remove noise in both the approximation
and the boundary function. In this approach, we start with
an initial image g and generate an approximation «. In
turn this approximation is used as an initial image to gener-
ate another approximation u,, and we may repeat as often
as desired with each successive approximation becoming
smoother. This is illustrated in Figure 1(f) which shows the
first iterate u; for the noisy piecewise constant example
image. Figure 1(g) shows the associated boundary function



which is almost entirely noise-free.

An example on a face image is presented in Figure 2.
The approximation function u in the figure appears much
like an artists' sketch. This simplification means that the
approximations are more suitable for face feature extraction
than the original images. Examples of further applications
to segmenting medical and satellite images can be found in
[2].

4.1 Conclusions

We have presented a general framework for segment-
ing images and obtaining region boundaries based on mini-
mizing an objective functional for which the optimal
boundary function has a particularly simple form. A PDE
descent procedure can be used to minimize the reduced
form of the objective function. Many commonly used seg-
mentation approaches can be represented in this frame-
work, which is also general enough to include least squares
and total variation forms.

Further research is needed on the problem of selecting
the best weights for a given image or class of images, as
well the problem of automatically selecting the best choice
of norms for the residual function.
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Figure 1: (a) A piecewise constant image with additive Gaussian
noise, (b)-(c) approximation and boundary functions, respec-
tively, for MS functional, (d)-(e) approximation and boundary
functions for the Geman-type functional, (f)-(g) show the result
for an iterative approach which uses (b) as the initial image.
Note that the boundary function (g) is almost entirely noise free.

Figure 2: Smoothing face images. Original image is on the lft,
approximation in the middle and the boundary function is shown
on the right.



