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ABSTRACT

A method of rotation invariant texture classification based
on a joint space-frequency model is introduced.
Multiresolution filters, based on a truly analytic form of a
polar 2-D Gabor wavelet, are used to compute spatial
frequency-specific but spatially localized microfeatures.
These microfeatures constitute an approximate basis set for
the representation of the texture sample. The essential
characteristics of a texture sample, its macrofeatures, are
derived from the statistics of its microfeatures. A texture is
modeled as a multivariate Gaussian distribution of
macrofeatures.  Classification is based on a rotation
invariant subset of macrofeatures.

1. INTRODUCTION

Several methods of rotation invariant texture classification
have been proposed. Of spatial domain techniques those
based on Markov Random Field (MRF) models
predominate. While MRF models are inherently dependent
on rotation, they have proven quite effective for many non-
rotation invariant applications, and several methods have
been introduced to obtain rotation invariance [1], [2], [3].

In other techniques, features are extracted that allow the
formulation of a rotation invariant model. Leung and
Peterson [4] present two approaches, one that transforms a
Gabor-filtered image into rotation invariant features and the
other of which rotates the image before filtering; however,
neither utilizes the spatial resolving capabilities of the
Gabor filter. Porat and Zeevi [5] use sample statistics
based upon three spatially localized features, two of which
(dominant spatial frequency and orientation of dominant
spatial frequency) are derived from a Gabor-filtered image.
You & Cohen [6] use filters that are tuned over a training
set to provide high discrimination among its constituent
textures.

The approach defined herein utilizes a Gabor wavelet
transform to create a multiresolution space-frequency
representation of the texture sample. A polar, analytic form
of the 2-D Gabor function is used. This representation is
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transformed into a set of microfeature vectors that
characterize local amplitude, frequency and directionality.
Macrofeatures are derived from the sample statistics of the
microfeatures and characterize a texture sample. The
texture class model is a multivariate Gaussian distribution,
the parameters of which are estimated from the statistics of
the macrofeatures over several sample textures. A rotation
invariant subset of macrofeatures is selected for
classification, which is based on the MAP criteria.

2. THE GABOR FUNCTION

While many functions may be used for multiresolution
space-frequency analysis, Gabor functions are particularly
well suited since they achieve the theoretical minimum
space-frequency bandwidth product [7],[8]. As filters, they
provide optimal spatial resolution for a given bandwidth.
Furthermore, they don’t exhibit sidelobes. Finally, Gabor
functions appear to share many properties with the human
visual system [3].

One-dimensional analytic Gabor function

A Gabor function is the product of a Gaussian function and
a complex sinusoid. Its general 1-D form is
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G(w) exhibits a relatively small but, depending on the
bandwidth, potentially significant response at @ = 0 (as
shown in figure 1) and at very low frequencies. This
manifests itself as an undesirable response to inter- and
intra-image variations in contrast and intensity due to
factors unrelated to the texture itself, such as lighting and
shading.
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Figure 1. Response of Gabor function at w= 0 vs.
bandwidth.

While point logarithmic [9] or local normalization
preprocessing can reduce or eliminate these problems, a
straightforward and effective approach is to force the Gabor
function to be truly analytic by defining it to be
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where Ga(®) = [G(w) + G(-w)] / 2 is the DFT of the
imaginary part of g(x), i.e., the conjugate antisymmetric
part of G(w). Thus, the real and imaginary components of
g(x) become a Hilbert transform pair. This modification
eliminates most deleterious effects at very low frequencies,
even when the octave bandwidth of H(w) is relatively high.

Two-dimensional Gabor functions

Gabor functions may be extended into two dimensions.
The Cartesian form is the product of two orthogonal one-
dimensional Gabor functions:
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The polar form is, in the spatial domain, the product of a
Gabor function in the radial direction and a Gaussian
function of orientation angle:
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3. TEXTURE REPRESENTATION

Representation in Gabor space

It has been shown [10], [11] that a set of Gabor functions of
the form (4) can be used as a complete, albeit non-
orthogonal, basis set for representing a 2-D signal #(x,p).
Similarly, #(x,y) can be represented as
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is the polar form (6) of Gabor functions sampled
appropriately in space, frequency and orientation, and P, R,
D, Q, 0, 6, and 0, are constants. While methods exist to
compute exact coefficients for Gabor expansion [10], [11], a
good approximation may be obtained by using
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from [12], provided that o, and o, are chosen to provide

bandwidths appropriate to the sampling intervals in the

space and frequency domains. .

Following Bovik, et. al. [13], b,,(n,n,) may be described
as a “band” or “channel” of #(x,y) tuned to the “carrier”
frequency pQ at the orientation r@ and sampled in the x
and y dimensions at intervals of D. And since
hn,,n, (6 ¥) is a narrowband, analytic function, b, {n:,n,)

is also narrowband and analytic.

Multiresolution representation

A 2-D polar Gabor function may be expressed as the basic
wavelet
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where Q, = 2,27, ©,=360°¢/R, and D, S, R, ¥, 0, and
k= 1/(£,0,) are constants. By substituting the coefficient
approximations from (9) into (7), the signal may be fully,
although approximately, represented with the coefficients
bs {ns,ny).



Transformation into microfeatures

Since by (ny,ny) is analytic, it may be decomposed into its
amplitude, a,(n;,n,) = |b; {nx,ny)|, and phase, ¥ (n.,n,) =
arg[bsAn:,m,)], components. The gradient of the phase,
u, (n.,ny) VI Ann)l, contains the frequency
characteristics of #(x,y), while a,{n;,n,) contains its
amplitude characteristics.

From these components, microfeatures are defined as
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a;(n.,ny) and u,(n,,n)) are periodic in r with a period of
R/2, and rotating #(x,y) by ¢ produces circular r-shifts of
2R¢ /360° in a,,(n,,n,) and u,(n,,n,). Thus, the DETs in
(11-14) map rotationally induced shifts into the phase
angles foa(n) and for(m,n,)’, while the amplitude
components fa(n.,n,) and fe(r,,n,) are unaffected .
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Ja(nn) and fe(n.,n,) describe the local amplitude and
frequency characteristics, respectively, of #(x,)) and are
rotation invariant. Both fpa(n.,n,) and for(ns,n,) contain
only local directionality information and as such, they may
be combined into fo(r,n,) to reduce the dimensionality of
the feature set.

Jalnu,ny), fe(n,n) and fo(n.,n,) provide a complete, though
approximate, representation of #(x,y). Since all of the
transformations described in this section are either exactly
or approximately invertible’, little information has been
lost in the representation of a texture sample as
microfeatures.

4. THE TEXTURE MODEL

Assuming an underlying second order distribution, a
sample may be accurately characterized by its macrofeatures

" u, (n,m,) will be treated as complex, with the x and y
components as real and imaginary, respectively.

? Vector notation (bold) will be used henceforth to indicate
all components indexed by s and r at site (n,,7,).

* The gradient is exactly invertible if boundary conditions
are available.
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Fca, Fer and Fcp describe the amplitude, frequency and
directional characteristics, respectively, of the “carrier”.

Fam, Fpm and Fpypy describe the amplitude modulation,
frequency modulation and directional modulation

characteristics, respectively. All, except Fcp, are rotation
invariant.

Defining F = [Fca Fcr Fam Frm Fpwml, and assuming
that the random vector F has a Gaussian distribution, the
texture type c is modeled as:
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where F. = E{F | c}, C. = E{F-F'| c¢}- E{F | c}- E{F"|
c} and M = (5 X R/2 x S) is the number of macrofeatures.
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5. EXPERIMENTAL RESULTS

Experiments were performed on 13 texture images from the
Brodatz album [14] and other sources. Each texture was
digitized at rotations of 0°, 30°, 60°, 90°, 120°, 150° and
200° as 512x512 images, each of which was then
subdivided into 16 128x128 subimages.  Half of the
subimages were used to define the class texture model and
the other half used as test samples. The Gabor transform
parameter values were S=5,R=16, y=1, x = .283 and
6, = 1.0. The MAP criterion was used for classification
decisions. Classification performance is presented in table
1. Overall, 99.0% of the texture samples were correctly
classified.



Texture sample type
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bark 561 01 0otofototojoioioijo}ofao
brick 0§56 010f0j0to0j0ofojoiojol}o
bubbles } 0 1 0 15610101010 1010740101010
|grass 0 0 0 §15211 0 0 {010 0 0 0 0
leather 0 (4] 0 14 1551 0 01010 [{] 0 0 0
pigskin | 0 0 0 jJ030}§56301110 0 0 0 1
raffia 0 0 0 1030 0 15610410 (] 0 0 0
sand 0 0 0 §010 0 0 {5510 0 0 0 0
[straw 0101010101010 1015610301010
water 0 0 0103030 0010 15640 010
weave 0 0 010710730 070710 071561 010
wood 0 0 01010 0 0 0§10 0 0 563 0
wool C10 70101070 1T077010 1070107155
%correct] 100110071004 9319811001100§98 110041001 100§100}98

Table 1. Number of texture samples classified as the
texture type indicated in the leftmost column.

6. CONCLUSION

In conclusion, the approach of utilizing an information-
conserving model based on Gabor features has been
demonstrated to be highly effective in rotation invariant
texture classification. The algorithm structure is well
suited for parallel and/or pipeline implementations. This
approach should be extensible to both texture segmentation
and scale invariant classification.
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