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Abstract

Feature detection is a fundamental i1ssue in many
intermediate level vision problems such as stereo, mo-
tion correspondence, image registration, etc. In this
paper a new approach to feature delection is presented.
It is based on a scale-interaction model of the end-
inhibition property exhibited by certain cells in the vi-
sual. cortez of mammals. These feature detector cells
are responsive to short lines, line endings, corners and
other such sharp changes in curvature. In addition,
this method also provides a compact representation of
feature information which is useful in shape recogni-
tion problems. Application to face recognition and mo-
tion correspondence are illustrated.

1 Introduction

We present a novel approach to feature detection
and illustrate its usefulness in applications such as mo-
tion correspondence, and face recognition (see also [1]
in this proceedings for application to image registra-
tion). Feature detection is an important early vision
problem. Previous work on feature detection include
using grey level statistics (eg: Moravec’s operator {2]),
and detecting edges and corners. Strong edges and
corners are particularly useful in applications such as
analysing aerial images of urban scenes, airport facil-
ities etc. Algorithms based on grey level statistics are
applicable to a wider variety of images such as desert
scenes, surfaces of Moon and Mars, which do not con-
tain any man made structures. Given that the nature
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of salient features vary from application to applica-
tion, it is desirable that a feature selection algorithm
be as general as possible. Features, by definition,
are “perceptually interesting”. In case of structured
objects such features could be corners and locations
with significant curvature changes. When analyzing
human faces, features of interest could be the eyes,
nose, mouth, etc. The generality criterion addresses
the issue of whether a given feature detection algo-
rithm can be used in a wide variety of applications. A
second criterion, that of robustness, is equally impor-
tant in applications such as correspondence. A fea-
ture detection algorithm can be considered robust if it
identifies the same feature locations independent of ro-
tation, translation, and minor scaling and perspective
distortions. Most feature detection schemes which ob-
tain a symbolic representation in terms of edges and
corners are not quite general, where as it has been
observed that general purpose feature detection algo-
rithms such as Moravec’s or its variants are not robust
[3]. The method that we are going to describe below
appears to be both robust and of general utility, and
has been tested successfully on several wide ranging
applications. A third attribute of the scheme is that
it provides a simple representation mechanism as well,
and this could be useful in applications such as recog-
nition.

2 Feature Detection Model

The development of our feature detection scheme
is motivated in part by the early processing stages in



Figure 1: Illustrating the selectivity of end-inhibited cells to curvature changes. In (a) the inhibitory end zones
of such a cell are not activated, and the cell in turn responds strongly to the contour. In (b) the same cell is not
activated as the inhibitory end zones suppress its activity. In our model these inhibitory end zones are simulated
through the interactions between simple cells at different scales.

the visual cortex. The feature detection model is an
extension of our earlier work on boundary detection
[4]. Cells in the visual cortex can be broadly classified
into simple, complex and hypercomplex [5]. Of inter-
est here is the end-inhibition property of the hyper-
complex cells, which we try to model at a functional
level. This property refers to the receptive fields of
cells which respond to short lines and line endings,
and whose response decrease as the line lengths are
increased. In [4] we discuss the role of end-inhibition
in texture boundary localization and perception of il-
lusory contours. Here we use end-inhibition to localize
perceptually significant features in the image, and to
provide a simple yet powerful representation mecha-
nism for pattern recognition.

End-inhibition is modeled using scale interactions
between simple features at different spatial frequen-
cies. The first stage in our model consists of obtain-
ing a wavelet decomposition of the image. The basic
wavelet function used is a Gabor function of the form

1)

gx(z,9,0) = e~ 7+ Hin!

' = zcosf+ ysinb
y = —xsinf + ycosb

where X is the spatial aspect ratio, 6 is the preferred
orientation. To simplify the notation, we drop the
subscript A and unless otherwise stated assume that
A = 1. For practical applications, discretization of the
parameters is necessary. The discretized parameters
must cover the entire frequency spectrum of interest.
Let the orientation range [0, 7] be discretized into N
intervals and the scale parameter o be sampled ex-
ponentially as o/, j € Z. This results in the wavelet
family

(g(aj(l' —Zo, Y — yO)’ak))aa € R: .] = {01 —17 _2’ }
(2)
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where 0 = kx/N. The Gabor wavelet transform is
then defined by

W;(z,u.0) = / o, 1) 67 (09 (21-2, 11—v), 0) dsdyy
(3)

The next stage in our model involves local scale in-
teractions to generate end-inhibition. If Q;;(z,y,6)
represents the output after interactions between fea-
tures at two scales i and j (o < of) with preferred
orientation #, then

Ql](a:.y,g):g(HWz(x,y,ﬂ)—7VV,(.1:,y,0)||) (4)

where v = a~2¢9) is the normalizing factor. It is
casy to visualize the inhibitory end-zones of the result-
ing transformation by considering (4) as a non-linear
transformation of a difference-of-Gaussians along the
preferred orientation.

The final step is to localize these features. Loca-
tions (z,y) in the image are identified as features if

Qij(z,y) =

max
(z!,y")ENy

Qij(z’)yl) (5)

where
Qij(z',y) = m;XQij(ﬂc', y',6)

and Q;;(2',y',0) is given by (4). Ny represents a
local neighborhood of (z,y) within which the search
is conducted. In our experiments we have set this
neighborhood to a circle with radius equal to the stan-
dard deviation of the Gaussian of the coarser of the
two scales used in the interaction. Figures 1 and 2
illustrate the response of these features detectors to
changes in curvature. Applications to face recognition
and motion correspondence are now discussed.



Figure 2: Salient feature locations detected by the sys-
tem for the hand drawn hammer image. The partic-
ular scale-pair used in this example is# = 0, j = —6,

with o = /2.
3 Application to Face Recognition

Here we illustrate an useful aspect of this feature
detection scheme - that of representing shape infor-
mation. As we mentioned earlier, the feature locations
correspond to, in some sense, locations with significant
change in the local curvature. This information can be
quantitatively represented as a feature vector (whose
dimensions correspond to the number of discretized
orientations). A graph is then constructed, with the
nodes in the graph representing features, and the links
representing relationship between the features. As an
example, the nodes contain information about the fea-
ture values and their locations, while the links repre-
sent distances between the feature nodes. The i-th
feature vector q; with spatial coordinates (x,y) in our
representation corresponds to

qi = [Qi(2,v,61), ..., Qi(z,y,0n)] (6)

The problem of recognition can then be formulated
as an “inexact” graph matching, involving matching
an input graph to one of the stored model graphs.
This in turn can be formulated as an optimization
problem involving minimization of an appropriate cost
function. The cost function has two parts: the sim-
ilarity measure between the set of matched features,
and a topolgy measure which preserves the spatial re-
lationship between matched features. We use a local
deterministic search algorithm to minimize the cost
function. For details we refer to [6]. To summa-
rize, the face recognition scheme involves three steps:
(a) detecting the feature locations, (b) constructing a
graph representation, and (c) matching with a stored
database.
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Figure 3: BExamples of successful matches. The left
image of each pair is the input image to the system,
and the right image is the best match found.

In our current implementation, we have used four
discrete orientations (N = 4, § = {0,45,90,135}),
and each feature vector needs four bytes of mem-
ory to store the information. Features are detected
at one scale corresponding to the following parame-
ters: o = V2,4 = —=2,j = —5 in (4). The neigh-
borhood set N; of a feature node 7 consists of its five
nearest neighbors. Note that this set is not necessar-
ily symmetric. Typical number of feature points per
face image is about 40, and thus we need about 150-
200 bytes to store information about each face. This
should be compared to the original 128x128 inten-
sity image which occupies about 16K bytes of memory.
The recognition statistics on a fairly large database of
over 300 face images of 86 persons shows that the sys-
tem is able to correctly identify the person 85% of the
time. Figures 3 and 4 show some results of recogni-
tion. These results indicate that the system tolerates
a fair amount of distortion and/or changes in facial
orientation.

4 Application to Motion Correspon-
dence

The goal here is to extract salient points from a
sequence of images, and to obtain the image plane



Figure 4: Examples of failures. The first image in
each row is the input image, and the following three
images are the top three matches found. Note that
in the first two rows the correct match is among the
three best matches.

trajectories of these points. This is formulated as a
recursive tracking problem, with the dual objective
of estimating the motion of the camera, and tracking
feature points in the image sequence.

Feature points are extracted using the method de-
scribed in Section 2. Feature point correspondence
between two successive image frames in the sequence
is posed as a labelled graph matching problem, where
the feature points are treated as nodes of a labelled
graph. Points within a certain minimum distance of
each other are connected by edges of the graph. The
problem of motion correspondence is somewhat similar
to the face recognition problem in the sense that both
require a correspondence between distinct features in
two or more images, or between stored patterns and a
test pattern. In both cases, labelled graph matching
provides the required invariance to limited amounts
of distortion, unlike correlation-based methods which
are known to be sensitive to distortion.

The difference betweeen the two applications arises
from the fact that in motion tracking, it is possible to
interleave feature point matching with the recursive
estimation of motion parameters. Current 3-D motion
information is used to predict the positions of feature
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points in the incoming image, thereby reducing the
search time for finding match points. Feature points
are not assumed to have already been extracted in
all the images in the sequence; instead, feature points
extracted from the first image are “tracked” over suc-
cessive images in the sequence by graph matching be-
tween consecutive image frames.

Experimental results on a real image sequence,
called the UMASS Rocket sequence, are shown in
Fig. 5. Details of the motion models and estimation
methods used can be found in [7]. The 1st, 8th and
16th frames from this sequence are shown in Fig. 5(a),
(b) and (c). Feature points extracted using scale in-
teractions are shown in Fig. 5(d), and trajectories of
selected points are shown in Fig. 5(¢) and (f), super-
imposed on the 1st and 16th frames, respectively.

References

[1] Q. Zheng and R. Chellappa, “A computational vi-
sion approach to image registration,” August 1992.
in this proceedings.

[2] H. P. Moravec, “Towards automatic visual obstacle
avoidance,” in Proc. 5th Int. Joint Conf. Artificial

Intell., (Cambridge, MA), p. 584, August 1977.

H. Li and S. K. Mitra, “Automatic selection of
control points for image registration,” Tech. Rep.
CIPR 91-16, Center for Information Processing
Research, University of California, Santa Barbara,
September 1991.

[4] B. S. Manjunath and R. Chellappa, “A computa-
tional model for boundary detection,” in Proc. of
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, (Maui, Hawaii),

pp- 358-363, June 1991.

D. H. Hubel and T. N. Wiesel, “Receptive fields,
binocular interaction and functional architecture
in the cat’s visual cortex,” Journal of Physiology,
vol. 160, pp. 106-154, January 1962.

B. S. Manjunath and R. Chellappa, “A feature
based approach to face recognition,” in Proc. of
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, (Champaign, Illi-
nois, June 1992), June 1992. (to appear).

S. Chandrashekhar and R. Chellappa, “Passive
navigation in a partially known environment,” in
IEEE Workshop on Visual Motion, (Princeton,
NI), pp. 2-7, October 1991.



Figure 5: Tracking results for the Rocket sequence.
Massachusetts at Ambherst.)

(Courtesy: R. Dutta and R.
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