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Abstract

Faces represent one of the most common visual pat-
terns in our environment, and humans have a remark-
able ability to recognize faces. Face recognition does
not fit into the traditional approaches of model based
recognition in vision. We present here a feature based
approach to face recognition, where the features are
derived from the intensity data without assuming any
knowledge of the face structure. The feature ertrac-
tion model is biologically motivated, and the locations
of the features often correspond to salient facial fea-
tures such as the eyes, nose, etc. Topological graphs
are used to represent relations between features, and
¢ simple deterministic graph maiching scheme which
ezploits the basic structure is used to recognize famil-
iar faces from a database. Each of the stages in the
system can be fully implemented in parallel to achieve
real time recognition.

1 Introduction

In recent years the problem of face recognition has
attracted considerable attention. Human faces repre-
sent one of the most common patterns that our visual
system encounters. They also provide a good example
of a class of natural objects which do not lend them-
selves to simple geometrical interpretations. Current
vision techniques for this problem range from simple
template matching to sophisticated feature based sys-
tems. The method presented here differs significantly
from other work in the following respects. Although
feature based, the features are derived from the raw
intensity data without making use of any prior knowl-
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edge. Thus, even though most of the time the feature
locations correspond to salient features in the face such
as eyes, nose, mouth etc., there is no internal represen-
tation for these high level features as such. Secondly,
this scheme allows for a very simple representation for
each feature node, with an order of magnitude savings
in the memory requirements (see section (4)).

The face recognition scheme we propose consists of
three main stages. In the first stage we derive a de-
scription of the intensity image in terms of features.
Intensity based approaches such as template match-
ing or eigenvalue analysis are sensitive to changes in
intensity which might be caused by local distortions
and changes in viewing angle as well as translation.
A feature based approach, on the other hand, is less
sensitive to such changes. In the second stage we con-
struct a graph representation of the face, with the
nodes in the graph representing feature information,
and the links representing feature relations. In our
current implementation these links represent Euclid-
ian distances between the feature nodes. The final
step, that of recognition, is formulated as an inexact
graph matching problem. This involves matching the
input graph (of a face which is to be recognized) with
a stored database. The matching itself involves mini-
mizing an appropriate cost function.

1.1 Previous Work

Human faces provide a very good example of a class
of natural objects which do not lend themselves to sim-
ple geometrical representations, and yet the human
visual system does an excellent job in efficiently rec-

ognizing these images. Considerable research has been
done in developing algorithms to solve this problem.



Kanade [1] describes one of the early systems built
for this task. The system automatically localizes fea-
tures such as corners of the eyes, nostrils, mouth etc.
Then a set of sixteen facial parameters correspond-
ing to these features is computed. A simple Euclidian
distance measure is then used to compute the similar-
ity between a test face and a stored face. The best
case performance of the system was 15 correct iden-
tifications out of 20 test faces. The test data differed
from the training data in that there was a period of
one month between the acquisition of the samples; in
both cases a full frontal view was used.

While [1] describes a top-down analysis of the prob-
lem, a completely data driven method is suggested in
(2] by Turk and Pentland. Their system tracks a per-
son’s head and identifies the face by comparing its
features with a known database. The basic idea is to
find a lower dimensional feature space to represent the
intensity data, and they make use of principal compo-
nent analysis. Their database consists of images (of
16 persons) taken under different lighting conditions,
sizes and orientation. They report classification ac-
curacy of 96% over lighting variations, 85% over ori-
entation variations and 64% over size variation. This
approach to recognition is similar to many earlier at-
tempts in transforming a 3-D recognition problem to
a 2-D matching, without detecting any perceptually
significant features.

The above two methods illustrate two diverse ap-
proaches to this problem, and a comprehensive dis-
cussion on various aspects of face recognition can be
found in [3]. In a different context, and as an exam-
ple to illustrate the principle of dynamic link archi-
tecture, Lades et al. [4] also provide results of their
experiments on face recognition. In their case, the
basic features are the Gabor coeflicients obtained by
convolving the image with a bank of Gabor filters at
multiple scales and orientations. These features cor-
respond to edges and lines in the image. The authors
report an impressive 97% classification over a data set
of about 80 faces, with the training and test sets dif-
fering in the orientations of faces. For other connec-
tionist approaches see for example Kohonen [5], and
Fuchs and Haken [6].

As mentioned in the previous section, the method
presented here is based on low level features and does
not make any explicit use of high level information.
The next section describes the model for feature de-
tection and localization. In Section 3 we discuss the
use of topological graphs for representing face infor-
mation and a simple graph matching algorithm for
recognition. Section 4 provides experimental results.
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2 Feature Detection and Localization

The development of the feature detection model is
motivated by the early processing stages in the vi-
sual cortex of mammals. The cells in the visual cortex
can be classified into three broad functional categories:
simple, complex and hypercomplex. Of particular in-
terest here is the end-inhibition property exhibited by
the hypercomplex cells. This property refers to the
response of these cells to short lines and edges, line
endings and sharp changes in curvature (e.g., corners).
Since these correspond to some of the low level salient
features in an image, these cells can be said to form
in some sense a low level feature map of the intensity
image. Although these cells were first discovered more
than two decades back [7], it is only recently that re-
searchers are beginning to gain some understanding
of their role in visual perception. For example, von
der Heydt and Peterhans [8] have provided conclusive
experimental evidence that these cells play a very im-
portant role in perceiving illusory contours. A simple
model incorporating their observations is developed in
[9] for detecting texture boundaries and illusory con-
tours.

The feature detection method presented here is
based on a model of end-inhibition property, and it
makes use of local scale interactions between simple
oriented features. The scale interaction model was
first suggested in [7] and more recently in [10]. The
method described here consists of two basic steps: The
first step is to extract oriented feature information at
different scales. In the second step, interactions be-
tween these oriented features at different scales result
in the end-inhibition effect.

Oriented feature information can be obtained by
a Gabor wavelet transformation of the intensity im-
age [9]. Gabor functions are Gaussians modulated by
complex sinusoids. A wavelet transformation results
in the decomposition of a signal in terms of basis func-
tions, with all the basis functions obtained by simple
dilations and translations of a basic wavelet. For the
Gabor wavelet transformation, the basic function is of
the form:
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where A is the spatial aspect ratio and § is the pre-
ferred orientation. To simplify the notation, we drop
the subscript A and unless otherwise stated assume
that A = 1. For practical applications, discretization



of the parameters is necessary. The discretized pa-
rameters must cover the entire frequency spectrum of
interest. Let the orientation range [0, 7] be discretized
into N intervals and the scale parameter « be sampled
exponentially as ol j € Z. This results in the wavelet
family
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(2)
where 0; = kx/N. The Gabor wavelet transform is
then defined by

W;(z,y,0) =/f(rl,m)g*(aj(xl—r,yry),@) dz1dy,
(3)

At each resolution in the representation hierar-
chy these wavelets localize the information content
in both the frequency and spatial domains simulta-
neously. Any desired orientation selectivity can be
obtained by controlling the parameter §. The Gabor
wavelet decomposition also has an important physi-
cal interpretation as to the type of features detected
[9] and has been used in applications such as image
coding [11, 12] and pattern recognition [4].

We now suggest a simple mechanism to model the
behavior of end-inhibition. The hypercomplex cell re-
ceptive field must have inhibitory end zones along the
preferred orientation. Such a profile can be gener-
ated either by modifying the profile of the simple cell
itself or through interscale interactions, discussed be-
low. The fact that both simple and complex cells of-
ten exhibit this end-stopping behavior further suggests
that both these mechanisms are utilized in the visual
cortex. If Q;;(z,y,0) denotes the output of the end-
inhibited cell at position (z,y) receiving inputs from
two frequency channels ¢ and j (¢ > o) with pre-
ferred orientation 6, then

Qij('T"’y’ 6) = g(||m($,y,t9) - ')’VV]' (z',y, 0)”)

where v = ¢~ 2(=1) is the normalizing factor.

The next step is to localize the curvature changes
signalled by these feature detectors. Locations (z,y)
in the image which are identified as feature locations
satisfy the following:

Qij(z,y) =

(4)

Qij(m’ay/) (5)

max
(z',y")ENzy
where

Qij(x/v :‘/) - rnga‘inj(wlw ylx 0)

and Q;j(z',y,0) is given by (4). Nyy represents a
local neighborhood of (z,y) within which the search
1s conducted.
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Figure 1: Salient features detected by the system. For
the hand drawn hammer image, all the feature loca-
tions correspond to significant changes in curvature.
The particular scale-pair used in this exampleis ¢ = 0,
j = —6, with o = V2.

Figure 1 illustrates the observation that the feature
locations correspond to points with significant curva-
ture changes. All the corners in this hand-drawn ham-
mer picture are located by the algorithm, although
only one particular set of parameters is used for the
scales. Figure 2 shows the location of features that
are detected for a pair of face images. Information at
these locations is used in the recognition process and
will be discussed in detail in the following. In addition
to this application, the feature detection scheme has
been successfully used in motion tracking [13] where
it is used to identify salient points in the image to
be tracked, and in image registration [14]. The im-
age registration application illustrates the robustness
of this method in identifying consistent set of features
irrespective of significant amounts of rotation, scaling
and perspective distortion between pairs of images.

3 Representation and Recognition
Using Graphs

The next step is to represent information about
the face using the available information at the fea-
ture points. Topological graphs are used in our recog-
nition scheme to represent relationships between fea-
tures. For convenience the features detected in a given
image are numbered as {1,2,...} (in any arbitrary, but
consistent way). The nodes V; in the graph correspond
to the feature points, and are characterized by {5, q},
where S represents information about the spatial lo-
cation, and

a4 = [Qi(z, ¥, 01), ..., Qilz, y,0N)] (6)



Figure 2: Feature locations marked for a pair of face
images. The scales used in this case correspond to
i=-2j = -5 (o = 2). Information at the fea-
ture locations is stored and used during the recogni-
tion process.

is the feature vector corresponding to the ith feature.
Let N; denote the set of neighbors of ith node. Direc-
tional edges connect the neighbors in the graph (i.e.,
the neighborhood is not symmetric). The neighbor-
hood of a node is determined by taking into account
both the maximum number of neighbors allowed as
well as the distance between them. The Euclidian dis-
tance between two nodes V; and Vj is denoted by d;;.

To efficiently identify the input graph with a stored
one (which is most similar to the input one based on
certain criteria) is another important issue, and has
received considerable attention recently. We describe
below a very simple algorithm which only involves lo-
cal search, is deterministic in nature and extremely
fast. The algorithm, however, does not guarantee op-
timizing the criterion function. In spite of this the
recognition rate is comparable to that of most face
recognition schemes that we are aware of, demon-
strating further the robustness of our feature extrac-
tion. Our implementation of the matching algorithm
is given below:

In the following, subscripts ¢, j refer to nodes in the
input graph Z, and ¢, j', m’, n’ correspond to nodes in
the stored graph O.

L. The input graph 7 is spatially aligned with the
stored graph O by matching the centroids of the
features {V;} and {V/}.

2. Let W; be the spatial neighborhood for the ith
feature in the input graph, over which a search is
conducted to find the best matching feature node
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Vir in the stored graph, such that
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3. After all the individual features are matched, to-
tal cost is computed by taking into account the
topology of the matched graphs. Let the nodes i
and j match ¢ and ;' respectively, and further
let j € N; (e, V; is a neighbor of V;). Let
Piitjly = min{dgj/d,vj/,dilj//d,-j}. Then the topol-
ogy cost for this particular pair of nodes is com-
puted as

Liyrjrs = 1 = piirjoj (8)

Note that if the match is perfect, d;; = d;1;» and
Lirjry = 0.

4. The total cost for matching input graph Z to a
stored graph O is then given by

CI(I’(’)):ZS”V-F)WZ Z trii’j’j (9)

i JEN,

where ), is a scaling parameter which controls the
relative importance of the two cost functions.

5. The total cost is then scaled appropriately to re-
flect the the difference in the number of features
between the input and stored graphs. If nz.no
denote the number of feature nodes in the input
and stored graphs respectively, then the scaling
factor s; = max{nz/no,no/nz}, and the scaled
total cost C(Z,0) = s;Cy(Z,0).

6. The best candidate match O* then satisfies

C(Z,0%) = minC(Z,0) (10)

Note that the above algorithm does not take into
account the topology cost during the matching pro-
cess. The topology cost is computed only after the
features are matched. The advantage is that there
are no iterations, and no stochastic elements involved
in the search, resulting in a very fast algorithm for
matching.

4 Experimental Results and Discus-
sion

We have implemented a simple face recognition sys-
tem based on the above principles. The input is a
128 x 128 image, having very little background noise.
In our current implementation, the feature responses



are computed at only one scale, corresponding to the
scale parameters { = —2, j = —5 in (4). Typical num-
bers of feature points detected in a face image using
(5) vary from 35 to 50. The number of discrete ori-
entations used was N = 4 (in (6)), corresponding to
0 = {0,45,90,135}. One byte of information is stored
for each of the components in the feature vector, or
approximately 200 bytes of information per face. This
constitutes an order of magnitude savings in memory,
from the 16K raw intensity data.

The database we have used has face images of 86
persons, with two to four images per person, taken
with different facial expressions and/or orientations.
Often there is a small amount of translation and scal-
ing as well. There are a total of 306 such face images in
the current database. Figure 3 shows some of the im-
ages in the database. For each face image, the stored
information corresponds to the feature graph {S, q}
discussed in the previous section. The neighborhood
set N; of a feature node i consists of its five nearest
neighbors. Note that this set is not necessarily sym-
metric.

The performance of the system is evaluated as fol-
lows: For each entry of a face image in the database,
the cost of associating another entry in the database
is computed according to (9). The parameter X; in
(9) is set to 0.2, so as to have equal contributions
to the total cost from the similarity measure and the
topological cost (as the summation over j is over the
neighbors, which in our case total five). These costs
are then sorted and the best match is the one having
the minimum associated cost as in (10). Note that
in doing this self-matches (which obviously result in
zero total cost) are ignored. The recognition accuracy
in terms of the best match corresponding to the right
person was 86%, and in 94% of the cases the correct
person’s face was in the top three candidate matches.
The graph matching steps 1 through 5 discussed in
Section 3 typically take less than 0.5 seconds for each
graph (on a SUN-Sparc workstation). Some results
of successful matches as well as failures are shown in
Figures 4 and 5.

In a typical application of this system, one can store
10 to 20 images of each person’s face, taken from dif-
ferent angles, with different facial expressions. Any
incoming face image can then be matched to this set
of images, and a threshold can be associated with the
matching cost to either accept a match or to reject.
Due to the nature of representation used, the associ-
ated memory requirements are minimal. The entire
matching process can be implemented on a parallel
hardware or connectionist network for real time appli-
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Figure 3: Some of the face images in the database.

cations. Among the issues to be addressed for future
work are the scale invariance and use of high level fea-
ture information.
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