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Abstract

An important goal of early vision is to iransform
the intensity data to a representation more suitable
Jor further processing. Ezamples of such transforma-
tions include obtaining depth information from stere-
o images, shape from shading, tmage segmentation
based on tertural and intensity discontinuities, elc. It
appears that one uf the basic pre-processing steps in
achieving these transformations is to detect oriented
features at multiple scales. An approach thai appears
to be promising is the Gabor wavelet transformation
of the intensity which results in such a multi-scale ori-
ented feature representation. In this paper we review
some recent work on the use of these wavelets in low
level vision processing and illustrate some applications
to problems such as boundary detection, feature detec-
tion and localization, and shape recognition.

1 Introduction

There has been a growing interest in the use of
wavelets for multiscale representation of image da-
ta. The features of interest in an image are generally
present at various scales. An efficient way to analyze
such features is to have a multiscale decomposition
of the image. Wavelets are families of basis function-
s generated by dilations and translations of a basic
wavelet. The wavelet transform is thus a decomposi-
tion of the function (image intensity) in terms of these
basis functions. One of the objectives of such a trans-
formation is to provide a simultaneous description of
the data in the frequency and spatial domains.

Let us first consider the one dimensional case. Let
g(z) be a wavelet, z € R (R denotes the set of real
numbers). Then the the family of basis functions cor-
responding to g(x) can be generated by translations
(9(z — 5)) and dilations (g(«z)), where s and « are
the translation and scale parameters respectively. Let
this family be denoted by (g(a(x — s))), (a,s) € R2.

1058-6393/92 $03.00 © 1992 IEEE

796

The wavelet transform of a function f(z) (assuming
that f(x) is square integrable) is defined by

Wyas)= [ T @) fa-snd Q)

The (*) indicates complex conjugate. Wavelets can be
discretized by a suitable sampling of the parameters
and s. For example we can write the scale parameter
as ol where j € Z, Z being the set of integers. This
results in a class of discrete wavelets represented by
gledz —n),(j,n) € Z2. A function f(z) can then be
expanded in terms of the basis functions 9() as

f(z) = Zc,-jg(aj:c —19)

iJ

The Laplacian pyramid [1] mentioned earlier is a
wavelet decomposition based on Difference of Gaus-
sian (DOG) wavelet and has found many applications
in image processing [2]. Orthogonal wavelets are a
special family of discrete wavelets corresponding to
@ = 2, where the basis functions are mutually orthog-
onal, i.e., {g(z) g(?2 — k)dz = 0 for ((4,k) € ZZ).
An important feature of orthogonal wavelets is that
the information at different resolutions is uncorrelat-
ed. Orthogonality, in general, is a strong condition,
and is difficult to achieve if arbitrary orientation se-
lectivity is desired.

This paper reviews some of the recent work on
the use of Gabor wavelets, a non-orthogonal family
of functions, in the analysis of image data. We begin
with a brief introduction to Gabor wavelet transfor-
mation in the next section. Sections 3 and 4 deal with
some application to problems in vision.

2 Gabor Functions and Wavelets

Gabor functions are Gaussians modulated by com-
plex sinusoids. In its general form, the 2-D Gabor



function and its Fourier transform can be written as

31,

H(Ty v; UO»'UO) — e(—[12/203+y?/2a:]+27ri[uu z+vo y]) (2)

G(u,v) = el =27 (72 (v=u0)’+o5(v=v0)"))

3)
o, and oy define the widths of the Gausslan in the
spatial domain and (ug,vo) is the frequency of the
complex sinusoid. A well known property of these
functions is that they achieve the minimum possible
joint resolution in space and frequency domains [3].
A signal such as a delta function which is concentrat-
ed at a point in space has no frequency localization.
Likewise, a function concentrated in frequency has no
spatial localization. A good measure of localization
in the two domains is the product of the bandwidths
in space and frequency. The effective bandwidth of a
signal is defined as the square root of the variance of
the energy of the signal. Let 6z and éy be the effec-
tive widths of the signal in the horizontal and vertical
directions in space respectively and éu, dv denote the
corresponding widths in frequency. Then the follow-
ing inequalities (also called the uncertainty relations)
hold: (a) éz 6u > 1/4x and (b) 8y év > 1/4n. Gabor
family of functions are unique in attaining the mini-
mum possible value of this joint uncertainty.

The Gabor functions form a complete but non-
orthogonal basis set and any given function f(z,y) can
be expanded in terms of these basis functions. Such an
expansion provides a localized frequency description
and has been used in image compression [4] and tex-
ture analysis [5]. Local frequency analysis, however,
is not suitable for feature representation as it requires
a fixed window width in space and consequently the
frequency bandwidth is constant on a linear scale. In
order to optimally detect and localize features at var-
ious scales, filters with varying support rather than a
fixed one are required. This would suggest a transfor-
mation similar to wavelet decomposition rather than
a local Fourier transform. We now consider such a
wavelet transform where the basic wavelet is a Gabor
function of the form
—(A3z"? 4y ) pins’

Iz, y,0)=c¢ (4)

z' = zcosf + ysind

y = —zsinf + ycosd

where A is the spatial aspect ratio, 8 is the preferred
orientation. To simplify the notation, we drop the
subscript A and unless otherwise stated assume that
X = 1. For practical applications, discretization of the
parameters is necessary. The discretized parameters
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must cover the entire frequency spectrum of interest.
Let the orientation range [0, 7] be discretized into N
intervals and the scale parameter a be sampled expo-
nentially as o/ . This results in the wavelet family

(9(c’ (z — 20,y — 0),60x)), ¢ €R, j ={0,-1,-2,..}

(5)
where 0, = kn/N. The Gabor wavelet transform is
then defined by

Wi(z,y,9) :/f(zl,yl)g*(aj(z,—x,yl—y),f)) dzidy;
(6)

3 Boundary Detection

In [6] a detailed discussion on the use of Gabor
wavelets in localizing boundary information is provid-
ed. The even and odd symmetric filters respond maxi-
mally to line and step edges, respectively, in the image.
These edges can be detected at the local maxima in
the energy of the filtered outputs, where energy is the
square root of the sum of the squares of the responses
of the even and odd symmetric filters corresponding to
the complex Gabor function. In the following discus-
sion I, g refers to the energy feature corresponding to
the spatial location s and orientation . Local compet-
itive interactions between these simple energy features
help in localizing the texture boundary information.
These interactions include competition between dif-
ferent orientations at each spatial location as well as
competition between neighboring features within each
orientation channel. Suppose the output of a cell at
position s in a given frequency channel with a pre-
ferred orientation @ is denoted by Y, g, with I, ¢ being
the excitatory input. I(s, @) could be the energy in the
filter output corresponding to feature (s, ) in a given
frequency channel. Let N, be the local spatial neigh-
borhood of s = (z,y). The competitive dynamics is
then represented by

Xa,ﬂ = _as,GXs,e'.'Is,o_ E bs,s’Ya’,ﬂ_ Z CO,O’Ya,B‘
s'EN, 8'#£8
(7

Ys0 = 9(Xs0) (8)

and (a,b,c) are positive constants. In our experi-
ments we have used a sigmoid non-linearity of the
form g(z) = 1/(1 + ezp(—pz)). We assume that al-
1 these interactions are symmetric (b, ,» = b,s, and
cg 60 = cgr ). The competitive dynamics of the above
system can be shown to be stable. The specific form of
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Figure 1: (a) Image consisting of four natural textures,
water, wood, raffia and grass, (b) texture boundary
detected, (c) texture consisting of three regions, L, T
and tilted-Ts. The boundary between L and T s can
not be easily detected. However the orientation differ-
ence between the two T regions is enough to discrim-
inate between the two regions in almost all frequen-
¢y channels, and (d) boundary detected is superim-
posed on the original. For both examples the results
shown correspond to the combined output from chan-
nels o = {1/2,1/2v2,1/4} and ¢ = 5 pixels.

the dynamics such as the one in (7) is not very critical,
as long as there is some form of local inhibition to sup-
press weak responses. Following these competitive in-
teractions, a grouping process integrates information
from similar features and completes the boundaries.
We show some results of texture boundary detection
in Figure 1.

4 Feature Detection and Localization

We now suggest a simple mechanism to model the
behavior of end-inhibition, a property exhibited by
certain cells in the visual cortex, using a local scale
interaction model following the Gabor wavelet trans-
formation. If Qij(z,y,0) denotes the output of the
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end-inhibited cell at position (z,v) receiving inputs
from two frequency channels i and j (o > of) with
preferred orientation 6, then

Qij(2,9,0) = g(Wi(2,y,0) — vWj(z,1,0))  (9)

where v = o~ 2(-7) ig the normalizing factor, and g(-)
a sigmoid non-linearity. The features represented by e-
quation 9 typically correspond to sharp changes in the
local curvature. Locations (z, ¥) in the image which
are identified as feature locations satisfy the following:

Qij(z,y) = Qij(z',y) (10)

max
(#',y')ENy

where
Qij(z',y) = max Qy;(z’, ¢/, 6)

and Qy;(z’,y',) is given by (9). Ny represents a
local neighborhood of (z,y) within which the search
is conducted. This feature detection scheme has been
successfully applied to some practical problems, and
in the following we briefly describe these applications.
4.1 Application to Motion Correspon-
dence and Image Registration

The first example is illustrated in Figure 2. The
goal is to detect and track features, and to compute
motion and structure parameters. Feature points are
first detected using the scheme outlined in the previ-
ous section. Some of tlese points are then tracked
over successive frames. For tracking, the informa-
tion contained in the Gabor wavelet transformation
is used, and the correspondence problem is integrated
with that of motion estimation. For details we refer to
[7, 8]. Another application where this feature detec-
tion scheme has been quite effective is in obtaining cor-
respondence in aerial images [9]. These aerial images
do not contain any easily perceivable structures which
can be detected and used in obtaining correspondence.
Central to this is solving the correspondence problem.
Figure 3 shows two images in the sequence and the
features detected. The key to the matching problem
1s to identify a consistent set of feature locations in
successive frames and the use of shading information
to estimate the rotation between the images. Once ro-
tation is estimated, an area based correlation around
the feature points is used in obtaining the correspon-
dence, details of which can be found in (9].

4.2 Application to Face Recognition

Here we discuss a potential application to the prob-
lem of face recognition (for details see [10]). After the



Figure 2: Tracking results for the Rocket sequence. (Courtesy:

Massachusetts at Amherst.)

Figure 3: Two successive images from a motion se-
quence, and feature locations using our model (cour-
tesy: Peter Kroger of JPL).

feature locations are identified in a given image (Fig-
ure 4), a representation of the shape information is
built using a topological graph data structure. For
convenience the features detected in a given image are
numbered as {1,2,..} (in any arbitrary, but consistent
way). The nodes V; in the graph correspond to the
feature points, and are characterized by {S, q}, where
S represents information about the spatial location,
and

qi:[Qi(‘l’:yvgl)’"'1Qi(x)y)0N)] (11)

is the feature vector corresponding to the ith feature.
Let N; denote the set of neighbors of ith node. Direc-
tional edges connect the neighbors in the graph (i.e.,
the neighborhood is not symmetric). Neighborhood
of a node is determined by taking into account both
the maximum number of neighbors allowed as well as
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Figure 4: Feature locations marked for a pair of face
images. The scales used in this case correspond to
i=-2,j = -5 (a = +2). Information at the fea-
ture locations is stored and used during the recogni-
tion process.

the distance between them. The Euclidian distance
between two nodes V; and V; is denoted by d;;. Such
a topological graphs forms a representation of shape
information in the database. When a given face image
is to be identified, the steps involve: (a) Computing
the Gabor wavelet transformation, and localizing the
feature information using the scale interaction model,
(b) Building a graph representation of the features so
detected, encoding both the feature as well as topo-
logical information, and (c) Performing a sequential
search over the database, matching each of the stored
graphs with the input graph.

We have implemented a simple face recognition
system based on the above principles. The input is




128 x 128 image, having very little background noise.
In our current implementation, the feature respons-
es are computed at only one scale, corresponding to
the scale parameters o = /2, i = —2,j = —5 in
(9). Typical number of feature points detected in a
face image using (10) vary from 35 to 50. Number
of discrete orientations used was N = 4 correspond-
ing to 8 = {0, 45,90, 135}. One byte of information is
stored for each of the components in the feature vec-
tor, or approximately about 200 bytes of information
per face. This constitutes an order of magnitude sav-
ings in memory, from a 16K raw intensity data. The
database we have used has face images of 86 persons,
with two to four images per person, taken with dif-
ferent facial expressions, and/or orientations. Often
there is a small amount of translation and scaling as
well. The recognition accuracy (percentage of success-
ful identifications) of the system is about 85%.

5 Discussion

In the past ten years considerable advances have
been made in modeling the receptive field profiles of
single cells in the visual cortex of mammals. One of
the promising approaches is the use of Gabor func-
tions to model these receptive fields, and the Gabor
wavelet decomposition provides a good description of
the first stage in the processing of intensity data. In
this paper we have reviewed some of the recent work
based on such a wavelet transformation of the inten-
sity data. We discussed how textural and intensity
discontinuities could be identified by considering local
competitive interactions between features. A model
for identifying salient image features is presented, and
is based on local scale interactions. Several applica-
tions of this feature detections scheme are also provid-
ed.
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