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Summary. We develop methods for analysing the spatial pattern of events, classified into sev-
eral types, that occur on a network of lines. The motivation is the study of small protrusions
called ‘spines’ which occur on the dendrite network of a neuron. The spatially varying density of
spines is modelled by using relative distributions and regression trees. Spatial correlations are
investigated by using counterparts of the K -function and pair correlation function, where the
main problem is to compensate for the network geometry. This application illustrates the need
for careful analysis of spatial variation in the intensity of points, before assessing any evidence
of clustering.
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1. Introduction

Fig. 1 shows a microscope image of part of the dendrite network of a rat neuron in a cell culture.
Small protrusions called spines are more clearly visible at higher digital magnification, as shown
in Fig. 2. Three types of spines are distinguished by their shapes, exemplified in Fig. 2. For a
better understanding of normal function and disease processes, it is important to characterize
the joint spatial distribution of spines of different types. For example, changes in spine shape
and distribution have been linked to neurological disorders (Irwin et al., 2001).

Spatial point process methods (Diggle, 2003; Illian et al., 2008) have been used since the 1970s
to analyse the spatial distribution of cells (Bell and Grunwald, 2004; Bjaalie and Diggle, 1990;
Diggle, 1986; Diggle et al., 1991, 2005; Fleischer et al., 2005; Millet et al., 2011; Mamaghani
et al., 2010; Ripley, 1977) and subcellular objects (Pedro et al., 1984; Webster et al., 2005; Chen
et al., 2008) observed in microscope imagery. The unusual feature here is that the spines are not
free to lie anywhere on the two-dimensional image plane but are constrained to lie on the one-
dimensional dendrite network. Since the dendrites propagate electrical signals, and convey most
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Fig. 1. Microscope image of a dendrite network (white lines) and part of a cell body (white area) of a rat
neuron in cell culture (width, 232 μm; height 168 μm; depth 2.6 μm; projected image; laser scanning confocal
microscope)

(a) (b) (c)

Fig. 2. Examples of spines of three types in Fig. 1: (a) thin; (b) mushroom; (c) stubby

of the nutrients and molecular genetic signals, the network structure is highly relevant. To our
knowledge, very few previous studies have attempted to analyse the arrangement of dendritic
spines along the dendrites (Yadav et al., 2012; Jammalamadaka et al., 2013). The application of
methods from spatial statistics may provide a deeper understanding of the spatial organization
of dendritic spines.

Methods for spatial analysis on linear networks have been developed over the past decade,
principally by Professor A. Okabe and collaborators (Okabe and Satoh, 2009; Okabe and Sug-
ihara, 2012), and include analogues of standard point process techniques such as Ripley’s
K-function (Okabe and Yamada, 2001). Recently it has been shown that these methods can
be improved by adjusting for the geometry of the network (Ang et al., 2012).

Fig. 3 is a representation of the dendrite network extracted from Fig. 1, together with the
locations and types of the spines. These data can be described as a multitype point pattern on
a linear network. In a ‘multitype’ point pattern, the points are classified into several different
categories or ‘types’. Equivalently, to each point xi of the point pattern we associate a categorical
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Fig. 3. Extracted representation of a branch of the dendrite network ( ) and multitype point pattern
of spines (�, mushroom; 4, stubby; C, thin)

variable ti indicating its type. In other examples the types could be different kinds of road
accident, criminal offences, and so on. Although it is usually straightforward to generalize point
process tools to apply to multitype point processes, experience shows that their interpretation
may be subtly different in the multitype case, and that statistical inference requires careful
attention (Baddeley, 2010; Grabarnik and Särkkä, 2009; Harkness and Isham, 1983; Illian
et al., 2008; van Lieshout and Baddeley, 1999).

This paper develops non-parametric methods for analysing multitype point patterns on a
linear network and applies them to the dendritic spines data. The methodology is based on first
and second moments of a point process, extends the results of Ang et al. (2012) to multitype
patterns and includes some additional techniques for estimating first-order intensity functions
on a tree-like network by using relative distributions and regression trees.

The plan of the paper is as follows. Section 2 sketches the scientific background to the dendrite
example. Section 3 gives some formal definitions and background. Methods for second-order
analysis using the K-function and pair correlation function are described in Section 4 under
the assumption of homogeneity, and in Section 5 for the case where inhomogeneity is present.
The dendrite data are analysed in Section 6, requiring the development of some additional
methodology. We end with a discussion.

2. Scientific background

2.1. Importance of spatial pattern of spines
Spines are protrusions that occur on the neuronal dendrites of most mammalian neurons. They
contain the postsynaptic apparatus and have a role in learning and memory storage. The shapes
of dendritic spines contribute to synaptic plasticity. The distribution of spine shapes is bio-
logically important because the electrical properties of spines, such as the spine neck resis-
tance, promote non-linear dendritic processing and associated forms of plasticity and storage
(Harnett et al., 2012) which enhance the computational capabilities of neurons. For example,



4 A. Baddeley, A. Jammalamadaka and G. Nair

mushroom-type spines are generally thought to be the most electrochemically mature and are
therefore more likely to create synapses with neighbouring neurons than are the stubby-type or
thin-type spines (Nimchinsky et al., 2002). Changes in spine shape and spatial distribution have
been linked to neurological disorders such as fragile X syndrome (Irwin et al., 2001).

The spatial distribution of spines is critically important. It determines the extent to which
electrical connections (synapses) will be established with the surrounding neural circuits (Yuste,
2011). It may also reflect activity patterns in these circuits, because the synaptic pruning that
occurs during neural development is dependent on this activity. Given that neighbouring spines
on the same short segment of dendrite can express a full range of structural dimensions, indi-
vidual spines might act as separate computational units (Harris and Kater, 1994). Nevertheless,
the dendrite acts in a co-ordinated manner and thus the joint spatial distribution of spines of
different types is likely to be important.

2.2. Data
The data originate from a study of neuronal development in cell cultures (Jammalamadaka et al.,
2013). In a series of replicate experiments, neurons were grown in glial culture and visualized
once. The analysis of this controlled, replicated experiment is beyond the scope of the present
paper. We confine attention to the single example pattern shown in Fig. 1, which was taken from
the fifth neuron in the second biological replicate experiment, observed on the 14th day in vitro.
The network shown in Fig. 1 is one of the 10 dendritic trees of this neuron. A dendritic tree
consists of all dendrites issuing from a single root branch off the cell body; each neuron typically
has 4–10 dendritic trees. This example was chosen because it is sufficiently large to demonstrate
our techniques clearly, without being too large for graphical purposes.

For more detail on how the image data were obtained, we refer the reader to Jammalamadaka
et al. (2013). To avoid errors that are inherent in automated reconstruction algorithms, the
dendrite network was traced manually, and spine locations and types were verified manually,
by trained observers. The linear network trace of each dendritic branch as well as the spine
locations and types as shown in Fig. 1 were obtained from the images by using the software
package NeuronStudio (Rodriguez et al., 2008; Wearne et al., 2005). The full image stack as
well as the annotation files are publicly available from the web site of Bisque (Kvilekval et al.,
2010) as detailed in the acknowledgements.

Although the material is three dimensional, and was originally visualized in three dimensions,
it is very shallow in the third dimension, so a two-dimensional projection is adequate for rep-
resenting the spatial layout of the dendrites. Three-dimensional information was nevertheless
essential to determine which parts of the network are physically joined. The resulting linear
network is shown in two-dimensional projection in Fig. 3.

2.3. Previous studies
In Yadav et al. (2012) clusters of three or more spines were identified by using hierarchical
clustering of distances along the dendrite network. In Jammalamadaka et al. (2013), the spatial
pattern of spine locations was studied by using the linear network K-function of Ang et al. (2012)
and was found to be completely spatially random. To assess dependence between the types of
neighbouring spines, Jammalamadaka et al. (2013) fitted a multinomial logistic regression of
spine type against the types of the three nearest neighbours. This suggested positive association
between the type of a spine and those of its neighbours.

3. Multitype point processes on a linear network

Mathematical definitions of a linear network in two-dimensional space, and of a point process
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on a network, were given in Ang et al. (2012). These require only minor adaptation to deal with
the fact that the dendrite network lies in three-dimensional space. Following is a brief summary.

A linear network in R3 is defined as the union L=∪n
i=1 li of a finite collection of line segments

l1, : : : , ln in R3. The total length of all line segments in L is denoted by |L|. The shortest path
distance dL.u, v/ between two points u and v in L is the minimum of the lengths of all paths
along the network from u to v. If v cannot be reached from u along the network, then we set
dL.u, v/=∞.

Our notation for multitype point patterns and point processes is borrowed from van Lieshout
and Baddeley (1999). A multitype point pattern data set y on a linear network L, with each
point belonging to one of c possible categories or types, is a finite set y ={.x1, t1/, : : : , .xn, tn/}
where xk ∈L is the location of the kth point and tk ∈C ={1, 2, : : : , c} is the type classification of
the kth point, k =1, 2, : : : , n, and the number n of random points is not fixed in advance.

A multitype point process Y on a linear network L is a stochastic process whose realizations
y are multitype point patterns. It can be regarded as a point process on L×C. We write X. =
{xk : .xk, tk/∈Y} for the ‘projected’ or ‘unmarked’ process consisting of the locations of points
of Y ignoring their types. For each possible type i, we write Xi ={xk : .xk, tk/∈Y, tk = i} for the
point process of locations of random points of type i. Then we may regard Y as equivalent to
the multivariate process .X1, : : : , Xc/. It is also useful to define, for any non-empty set I ⊆C, the
point process XI =∪i∈I Xi of points whose types belong to the set I.

More generally it would be possible to replace the set of categories C by any space C of possible
‘marks’. Then we would define a marked point process on L with marks in C as a point process
in L × C such that the projected process X. is a point process (meaning in particular that the
number of random points, regardless of their mark value, is almost surely finite). The mark tk
that is attached to the random point xk may specify any quantitative or qualitative characteristics
of the random point that are relevant to the study, such as size, arrival time and colour. The
methods of this paper extend to the general case of a marked point process. However, we shall
confine attention to multitype point processes for simplicity.

3.1. Intensity
The most important property of a point process is its ‘intensity’ or ‘rate’ which describes the
expected frequency of occurrence of random points of the process.

For an unmarked point process X on the linear network L we say that X has constant intensity
or rate λ> 0 if, for any B⊆L,

E[n.X ∩B/]=λ|B|,
where n.X ∩B/ denotes the number of points of X falling in B. Thus λ is the average density of
random points per unit length of the network. An unbiased estimator of λ, given a point pattern
data set x, is λ̂=n.x/=|L| where n.x/ is the number of points in x.

More generally the intensity may be spatially varying, and X has intensity function λ.u/ if, for
any B⊆L,

E[n.X ∩B/]=
∫

B

λ.u/d1u, .1/

where d1u denotes integration with respect to one-dimensional arc length along the linear net-
work. Heuristically if [u, u+d1u] denotes an infinitesimal segment in L, then the probability that
a point of X falls in the segment is P{n.X ∩ [u, u+d1u]/ > 0}=λ.u/d1u. In some applications
it may be inappropriate to assume that an intensity function exists, and we may have to rely on
the intensity measure Λ defined by Λ.B/=E[n.X ∩B/].
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The intensity function of a point process X on a linear network can be estimated by using
various kernel smoothing estimators (Xie and Yan, 2008; Okabe et al., 2009; Shiode and Shiode,
2009) although the statistical properties of these estimators are not very well understood.

If Y is a multitype point process on L, we write λi.u/ for the intensity function of Xi, and λI.u/

for the intensity function of XI where I ⊆C. It follows that λI.u/=Σi∈I λi.u/ and in particular
the intensity of the unmarked process X. is λ..u/=Σc

i=1λi.u/.

3.2. Multitype Poisson processes on linear networks
A multitype Poisson process on L can be defined in three equivalent ways, following Kingman
(1993): firstly as a Poisson point process Y on L×C; or secondly as a multivariate point pro-
cess Y = .X1, : : : , Xc/ such that the processes Xi of random points of each type are Poisson
processes, and X1, : : : , Xc are independent processes; or thirdly as a multitype point process Y
with the property that the process of locations X. is a Poisson process on L, and the marks are
conditionally independent given X..

A homogeneous multitype Poisson process is a process in which each component process Xi

has a constant intensity λi > 0 for i∈C. The unmarked process X. then has constant intensity
λ. =Σc

i=1 λi. The marks are independent and identically distributed, with probability pi =λi=λ.
for mark i∈C. For further explanation, see Baddeley (2010) and Illian et al. (2008).

4. Second-order statistics

Here we develop the analogue, for point patterns on a linear network, of the second-order
analysis of processes of several types of points. Ripley’s K-function (Ripley, 1976, 1977) was
generalized to multitype point patterns in two dimensions by Lotwick and Silverman (1982)
and Harkness and Isham (1983). The K-function was adapted to linear networks by Okabe and
Yamada (2001) and a geometrically corrected version of the K-function was proposed by Ang
et al. (2012). Here we extend the geometrically corrected K-function to the multitype case.

4.1. Key quantities
An important quantity that was introduced in Ang et al. (2012) is

m.u, r/=#{v∈L : dL.u, v/= r}, .2/

the number of locations v on the network which lie exactly r units away from the location u by
the shortest path. This quantity can be regarded as the perimeter of a ‘disc’ of radius r in the
linear network, centred at u. Let

R= sup{r : m.u, r/> 0 for all u∈L}: .3/

This can be interpreted as the ‘circumradius’ of the network as explained in Ang et al. (2012).

4.2. Multitype pair correlation function
For simplicity we make the regularity assumption that the multitype point process Y has intensity
functions of first and second order, i.e. for any i∈C the subprocess Xi has an intensity function
λi.u/ as defined in equation (1); and for any i, j ∈C the subprocesses Xi and Xj have a second-
moment intensity function λij.u, v/ defined to satisfy

E[n.Xi ∩A/n.Xj ∩B/]=
∫

A

∫
B

λij.u, v/d1ud1v .4/
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for disjoint line segments A,B ⊂ L. Heuristically λij.u, v/d1ud1v is the joint probability that
two given infinitesimal intervals, of lengths d1u and d1v, around the locations u and v will each
contain a random point, of types i and j respectively. For a multitype Poisson process Y we have
λij.u, v/=λi.u/λj.v/ for u �=v.

Equation (4) implies the ‘second-order Campbell formula’

E

[ ∑
xk∈Xi

∑
xl∈Xj

h.xk, xl/

]
=

∫
L

∫
L

h.u, v/λij.u, v/d1ud1v, .5/

which holds for any measurable real function h on L×L for which the right-hand side is finite.
We define the multitype pair correlation function between Xi and Xj by

ρL
ij.u, v/= λij.u, v/

λi.u/λj.v/
, u, v∈L: .6/

This is a non-centred correlation function with the heuristic interpretation

ρL
ij.u, v/=E[Ii.u/Ij.v/]={E[Ii.u/]E[Ij.v/]},

where, for any possible type k, Ik.u/ is the indicator that equals 1 if the interval of length d1u

around u contains a random point of type k.
The following useful result can easily be proved.

Lemma 1. Suppose that Y is a multitype point process on a linear network L whose first-
and second-moment intensities exist. Then:

(a) if Y is a multitype Poisson process, ρL
ij ≡1 for all i and j;

(b) if the component processes Xi, i∈C, are independent, ρL
ij ≡1 for all i and j, i �= j;

(c) if Y has the random-labelling property that the marks are conditionally independent and
identically distributed given the locations X., ρL

ij ≡ρL for all i and j, where ρL is the uni-
variate pair correlation function of X..

For an unmarked point process, a pair correlation function identically equal to 1 would usu-
ally be taken as indicating that the point process is consistent with a Poisson process, despite some
caveats (Baddeley and Silverman, 1984). However, for a multitype point process, the finding
that ρL

ij ≡1 for i �= j suggests merely that the component processes Xi and Xj are uncorrelated.
In the application to dendritic spines, there is a possibility of misclassification of spine types.

It is useful to note that cases (a) and (c) of lemma 1 still apply if spine types are independently
randomly misclassified. Suppose that the observed types tobs

k are conditionally independent
given the true types tk, and that P.tobs

k = j|tk = i/ does not depend on k. Then case (c) remains
true in that, if the true process Y has the random-labelling property, then the observed process
Yobs also has the random-labelling property, and the conclusion of case (c) holds for Yobs. The
Poisson process case (a) is a special case of (c).

4.3. Estimation assuming homogeneity
For the rest of this section we assume that the point process is homogeneous in the following
sense.

Definition 1. A multitype point process Y on a linear network L is called second order pseudo-
stationary if the first-order intensities are constant, λi.u/≡λi, and the second-order intensities
depend only on shortest path distance,

λij.u, v/=λij{dL.u, v/}, dL.u, v/<∞: .7/
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It follows that the multitype pair correlations also depend only on the shortest path distance,

ρL
ij.u, v/=ρL

ij{dL.u, v/}, dL.u, v/<∞: .8/

The condition that dL.u, v/ < ∞ means that we consider only pairs of points u and v that are
connected by a path in L. See Ang et al. (2012) for further discussion. In the dendrite network,
all points are connected.

Given a multitype point pattern data set y = {.x1, t1/, : : : , .xn, tn/} assumed to come from a
second-order pseudostationary process, we estimate the intensity λi for i ∈ C by λ̂i = ni=|L|,
where ni =n.xi/ is the number of points of type i. The multitype pair correlation function ρL

ij.r/

can be estimated by kernel smoothing of the interpoint distances, with appropriate weighting
for the geometry of the network (Ang et al., 2012):

ρ̂L
ij.r/= |L|

nij

∑
xk∈Xi

∑
xl∈Xj

κ{dL.xk, xl/− r}
m{xk, dL.xk, xl/} , .9/

where κ.·/ is any smoothing kernel function on R, with nij =ninj if i �=j and nii =ni.ni −1/. The
weighting factor m{xk, dL.xk, xl/} in equation (9), defined in equation (2), counts the number
of locations v on the network such that dL.xk, v/=dL.xk, xl/. This compensates for the variable
geometry of the network and ensures the following ‘unbiasedness’ property.

Lemma 2. If Y is second order pseudostationary, the smoothing estimator (9) satisfies

E[Nij ρ̂L
ij.r/]=λiλj|L|2 ρ̄ij.r/, .10/

where ρ̄ij.r/=∫
κ.t − r/ρL

ij.t/dt is a kernel-smoothed version of ρL
ij.r/. Here Nij is the random

variable Nij =NiNj for i �= j and Nii =Ni.Ni −1/ with Ni =n.Xi/ and Nj =n.Xj/.

A proof is given in Appendix A. In the special case of a multitype Poisson process, it is
easy to show that E[Nij]=λiλj|L|2, so equation (10) implies that ρ̂L

ij.r/ is the ratio of unbiased
estimators. It will be a consistent and asymptotically normal estimator of ρ̄ij.r/ under a large
sample limit regime and will be consistent for ρij.r/ with an appropriate bandwidth selection rule.
For non-Poisson processes, the quantity nij could be a biased and even inconsistent estimator
of λiλj|L|2, leading to possible bias in the estimation of the pair correlation. This problem is
familiar from two-dimensional spatial statistics (Ripley, 1976; Diggle, 2003).

4.4. Multitype K -function
Following is the multitype version of the geometrically corrected K-function that was introduced
in Ang et al. (2012).

Definition 2. Let Y be a multitype point process on the linear network L. For any types
i, j ∈C define

KL
ij.u, r/= 1

λj
E

[ ∑
xk∈Xj

1{0 <dL.u, xk/� r}
m{u, dL.u, xk/}

∣∣∣∣u∈Xi

]
.11/

for any location u∈L and any r ∈ [0, R/ where R is the circumradius defined in expression (3).

In heuristic terms, the K-function of the process gives the expected number of random points
of type j that lie within a given distance r of a typical random point of type i, normalized by
the intensity of points of type j. The conditional expectation on the right-hand side of equation
(11) is formally defined as an expectation with respect to the Palm distribution of Y given a point
of Xi at the location u. See van Lieshout and Baddeley (1999) for explanation.
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Again the denominator m{u, dL.u, xk/} in equation (11) compensates for the variable geom-
etry of the network and ensures the following result, which effectively states that the K-function
is well defined.

Lemma 3. If Y is second order pseudostationary, then, for any possible types i and j,
KL

ij.u, r/=KL
ij.r/ does not depend on the choice of u.

We call KL
ij.r/ the (geometrically corrected) multitype K-function. When i= j, KL

ii .r/ reduces
to the geometrically corrected K-function of Xi as defined in Ang et al. (2012).

Lemma 4. If Y is second order pseudostationary, then, for any possible types i and j,

KL
ij.r/=

∫ r

0
ρL

ij.t/dt: .12/

Lemma 4 is analogous to the connection between the K-function and pair correlation function
in the two-dimensional case. It leads to the following, practically important, result.

Lemma 5. Suppose that Y is second order pseudostationary. Then:

(a) if Y is a multitype Poisson process, KL
ij.r/= r for all i and j and 0� r<R;

(b) if the component processes Xi, i∈C, are independent, KL
ij.r/≡ r for all i �= j and 0� r<R;

(c) if Y has the random-labelling property that the marks are conditionally independent and
identically distributed given the locations X., then KL

ij.r/≡KL.r/, where KL is the geo-
metrically corrected K-function of X..

The proof is straightforward.
Result (a) of lemma 5 is important because it means that it is valid to compare K-functions

on different linear networks. It is further evidence that the geometrical correction factor m.u, r/

in equation (11) is appropriate.
Given a multitype point pattern data set y = {.x1, t1/, : : : , .xn, tn/} assumed to come from a

second-order pseudostationary process, we estimate the multitype K-function by

K̂
L
ij.r/= |L|

ninj

∑
xk∈Xi

∑
xl∈Xj

1{dL.xk, xl/� r}
m{xk, dL.xk, xl/} : .13/

The double sum in equation (13) has an unbiasedness property

E [Nij K̂
L
ij.r/]=λiλj|L|2 KL

ij.r/ .14/

for r < R. If Y is a multitype Poisson process, then K̂
L
ij.r/ is the ratio of unbiased estimators

and is consistent and asymptotically normal under an appropriate large sample limit. For a
non-Poisson process, the denominator Nij may contribute bias.

Note that result (14) is valid only for r<R. This is similar to the constraint that was imposed by
Ohser and Stoyan (1981) for validity of Ripley’s estimator of the two-dimensional K-function.

The variance of estimator (13) can be calculated by a straightforward adaptation of the results
of Ang et al. (2012). For a homogeneous multitype Poisson process, the variance of K̂

L
ij.r/ is

approximately constant as a function of r, over a large range of r-values.

4.5. Mark connection function
Experience with the analysis of two-dimensional point patterns (Diggle, 2003; Gelfand et al.,
2010; Illian et al., 2008) suggests that it may be useful, especially when investigating the random-
labelling property, to estimate the mark connection function (Illian et al., 2008) between marks
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i and j,

pij.r/= λiλj ρL
ij.r/

λ2· ρL.r/
, .15/

and the mark equality function

p.r/=∑
i

pii.r/: .16/

Loosely speaking pij.r/ is the conditional probability, given that there is a pair of points sepa-
rated by a distance equal to r, that the points have types i and j respectively. Similarly, p.r/ is
the conditional probability that the two points have the same type. Under any of the scenarios
listed in lemma 1, the functions pij.r/ and p.r/ are constant.

A practical strategy for analysis (assuming second-order pseudostationarity) is to start by
plotting the mark equality function p.r/. If this appears not to be a constant function, then the
data are apparently inconsistent with each of the scenarios in lemma 1; the form of p.r/ may
suggest the type of dependence. Alternatively if p.r/ appears to be a constant function, and if
the individual functions pij.r/ also appear to be constant, then the pair correlation functions
ρL

ij should be inspected to discriminate between the three scenarios in lemma 1.
The plug-in estimator of the mark connection function pij.r/, which is obtained by substi-

tuting equation (9) into equation (15), collapses to

p̂ij.r/= ∑
xk∈Xi

∑
xl∈Xj

sk,l.r/
/∑

k

∑
l �=k

sk,l.r/ .17/

where sk,l.r/ = κ{dL.xk, xl/ − r}=m{xk, dL.xk, xl/}: Up to a constant factor, the denominator
and numerator are unbiased estimators of the second-moment density of all points, and of
pairs of types i and j respectively.

5. Inhomogeneous second-order statistics

For a spatial point process with non-constant intensity, inhomogeneous analogues of the
K-function and pair correlation function were proposed in Baddeley et al. (2000) for two-
dimensional point processes, and in Ang et al. (2012) for point processes on a linear network.
Here we extend this idea to multitype point processes on a linear network.

Definition 3. Let Y be a multitype point process on the linear network L for which the first-
and second-moment intensity functions exist. The process will be called (multitype) correlation
stationary if, for all i, j ∈C, the multitype pair correlation ρL

ij is a function of distance only, i.e.
ρL

ij.u, v/=ρij{dL.u, v/}.

Theorem 1. Let Y be a correlation stationary multitype point process on a linear network L.
For fixed u∈L and for subsets i, j ∈C define

K
L,ih
ij .u, r/=E

[ ∑
xk∈Xj

1{dL.u, xk/� r}
λj.xk/m{u, dL.u, xk/}

∣∣∣∣u∈Xi

]
: .18/

Then

K
L,ih
ij .u, r/=K

L,ih
ij .r/=

∫ r

0
ρL

ij.t/dt .19/
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does not depend on u and will be called the multitype inhomogeneous K-function of Y.
Furthermore

K
L,ih
ij .r/= 1

|L|E

[ ∑
xl∈Xi

∑
xk∈Xj

1{0 <dL.xl, xk/� r}
λi.xl/λj.xk/m{xl, dL.xl, xk/}

]
: .20/

The intensity function λi.u/, u∈L, can be estimated by parametric or non-parametric meth-
ods as described in Ang et al. (2012). Then a plug-in geometrically corrected estimator of K

L,ih
ij .r/

is given by

K̂
L,ih
ij .r/= 1

|L|
∑

xl∈Xi

∑
xk∈Xj

1{0 <dL.xl, xk/� r}
λ̂i.xl/ λ̂j.xk/m{xl, dL.xl, xk/} , .21/

where λ̂i.u/ is an estimator of λi.u/.
Similarly, the multitype pair correlation function of a correlation stationary point process

can be estimated by

ρ̂L,ih
ij .r/= 1

|L|
∑

xl∈Xi

∑
xk∈Xj

κ{dL.xl, xk/− r}
λ̂i.xl/ λ̂j.xk/m{xl, dL.xl, xk/} , .22/

with κ again being a kernel function on R.
An analogue of the mark connection function (15) is available for inhomogeneous processes,

under the additional assumption that pi.u/=λi.u/=λ.u/ is constant for each type i. Since pi.u/

is the probability that a point at location u has type i, this amounts to assuming that the
distribution of types does not depend on location. Then for points u, v∈L, with dL.u, v/= r we
have

λi.u/λj.v/ρL
ij.u, v/

λ.u/λ.v/ρL.u, v/
=pipj

ρL
ij.u, v/

ρL.u, v/
.23/

and we define this quantity to be the generalization of pij.r/ to the inhomogeneous case. A little
algebra shows that equation (23) can be estimated by using the same ratio-of-sums estimator
(17) as in the homogeneous case. The explanation given below equation (17) continues to hold.

6. Analysis of dendritic spines data

The techniques that were developed in the previous sections will now be applied to the dendritic
spines data. Intensities are studied in Section 6.1. The results of this analysis lead us to split the
data into two subsets, which are analysed respectively in Section 6.2 (assuming pseudostation-
arity) and Section 6.3 (using inhomogeneous summary functions).

6.1. Intensity of spines
The linear network that was depicted in Fig. 3 has a total edge length of 1934 μm. There are
n. = 566 spines in total, broken down into n1 = 228 mushroom, n2 = 223 stubby and n3 = 115
thin spines, where we henceforth use the numerals 1, 2 and 3 to refer to mushroom, stubby and
thin spines respectively. Assuming constant intensity for each spine type, unbiased estimates
λ̂j =nj=|L| of the intensities are 0:118, 0:115, 0:059 spines μm−1 for the mushroom, stubby and
thin spines respectively, and λ̂. =n.=|L|=0:293 total spines μm−1.

Kernel estimation of intensity is discussed in Xie and Yan (2008), Okabe et al. (2009), Shiode
and Shiode (2009) and McSwiggan et al. (2013). Fig. 4 shows a kernel smoothing estimate of
the spatially varying intensity of the spines regardless of type, using the ‘equal split continuous’
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method of Okabe et al. (2009), section 5, with a Gaussian kernel with standard deviation 10 μm.
The ribbon width in Fig. 4 is proportional to the intensity estimate, which ranges between 0.01
and 0.78 spines μm−1.

Despite the risk that spatial inhomogeneity may be mistaken for clustering (Bartlett, 1964,
1975), Fig. 4 strongly suggests that different branches of the dendrite network have different
intensities of spines. The single unbroken filament in the lower right-hand side appears to have
relatively low intensity of spines. The remainder of the network could be divided into upper
and lower halves, with the lower half having greater intensity than the upper half. A similar
conclusion is suggested when the same technique is applied separately to the spines of each type.

In biological terms it is conceivable that a dendrite network may exhibit different structural
characteristics in different branches. A neuron has a single cell body which exerts centralized
control over the transcription of genes into molecular messages which are then distributed
throughout the entire dendritic tree. Uneven distribution of the messages may result in uneven
structural development.

For any proposed split of the network into several subsets S1, : : : , SK, the χ2-test of the null
hypothesis of constant intensity, against the alternative of different constant intensities in each
subset, is based on X2 =Σk{n.X. ∩Sk/−ek}2=ek with ek =nlk=l, where n.X. ∩Sk/ is the number
of spines in the kth subset and lk is the length of dendrite in the kth subset, and l =Σk lk and

Fig. 4. Kernel smoothing estimates of the intensity of spines (smoothing bandwidth 10 μm; the intensity
value is proportional to the width of the ribbon)

(a) (b) (c)

Fig. 5. Division of the dendrite spine data into three branches labelled (a) A, (b) B and (c) Z
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n=Σk n.X. ∩Sk/ are totals, and similarly for spines of a given type i. This test ignores the spine
types, but the analogous test could also be performed on the subprocess Xi of points of type i.

Selection of an appropriate split of the network into branches is a problem of model selection;
in our case, because the network is a tree, we adopt a recursive splitting approach similar to that
used for classification and regression trees (Breiman et al., 1984). Starting from the cell body
as the root of the tree, we visit each successive branching point of the network and apply the
χ2-test statistic of uniformity to the subset beyond this branch point. The data will be split if the
null hypothesis is rejected at, say, the 5% level. Of course the usual significance interpretation of
the tests is not applicable in this context where multiple tests are performed on the same data.

The result is a split into the three branches that are shown in Fig. 5. Branch A has n. = 419
spines along |L|=1203:2 μm of dendrites, with average intensity λ̂=n=|L|=0:348 spines μm−1,
and the breakdown by spine type is n1 =173, n2 =161 and n3 =85. Branch B has n. =128 spines
along |L|=569:6 μm of dendrites, with average intensity λ̂=0:225 spines μm−1, broken down
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Fig. 6. Q–Q-plots of distance to soma for (a) mushroom, (b) stubby and (c) thin spine types in branch B of
the dendrite network: order statistics of the observed distances from spines to the cell body (the vertical axis)
are plotted against quantiles of distance from a uniformly random point to the cell body (the horizontal axis)
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Fig. 7. Smoothing estimates of the function fj for (a) mushroom, (b) stubby and (c) thin spine types in
branch B of the dendrite network

into n1 =49, n2 =54 and n3 =25. Branch Z contains only four spines of each type in 132 μm of
dendrite and has several idiosyncrasies; for simplicity we delete this subset in the analysis that
is reported here.

It is also of interest whether the intensity depends on distance from the cell body. Assume
that, within a particular branch of the network, the intensity function λj.u/, u∈L, of spines of
type j depends only on distance to the soma (cell body)

λj.u/=fj{d.u/}, u∈L, .24/

where fj is a function to be estimated, and d.u/ is the distance from the location u ∈ L to the
cell body, measured by the shortest path in the dendrite network. Inference about fj can be
performed by comparing the empirical and theoretical distributions of distance, i.e. comparing
the observed distribution of distance values d.xi/ at the data points xi with the theoretical
distribution of d.U/ for a random point U uniformly distributed over the network L. This
approach is practical because it does not involve the geometry of the linear network, once the
distance values have been computed.
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Table 1. p-values for tests of constant intensity for each
spine type, assuming that equation (24) holds, within
each branch

Branch Spine type Test statistic

Kolmogorov– Z1 Z2
Smirnov

A Mushroom 0.299 0.917 0.590
Stubby 0.373 0.902 0.953
Thin 0.228 0.588 0.188

B Mushroom 0.662 0.912 0.751
Stubby 0.187 0.911 0.941
Thin 0.018 0.411 0.034
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Fig. 8. Second-order summaries of spine locations (regardless of type) in branch A, assuming constant
intensity ( , empirical estimate; , pointwise envelope of the summary functions obtained from 39
simulations of a uniform Poisson process with the same estimated intensity): (a) centred K -function K L.r/� r
plotted against r ; (b) pair correlation function ρL.r/

Our analysis suggests that, within each branch of the dendrite network, spines of a given
type have constant intensity, except for the thin spines in branch B. Fig. 6 shows Q–Q-plots
of distance to the soma for spines of each type, in branch B. Order statistics of the observed
distances d.xi/ for spines of a given type are plotted against theoretical quantiles of distance d.U/

at a uniformly random point U on the network. We computed the quantiles of d.U/ by creating
a fine grid of equally spaced locations uk ∈L, evaluating d.uk/ at each grid point, and sorting the
values. Another approach would be to generate a large number of independent uniform random
points U in L and to evaluate the distance d.U/ at these points. The plot suggests that fj may be
constant for the mushroom and stubby types j =1 and j =2, but not for the thin-type spines.

Assuming that equation (24) holds, the function fj is related to the slope of the Q–Q-plot.
One can use the non-parametric kernel smoothing estimators of fj that were developed for
spatial point processes (Baddeley et al., 2012; Guan, 2008) which apply without modification
to the case of a linear network, since again these do not depend on the geometry of the spatial



16 A. Baddeley, A. Jammalamadaka and G. Nair

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0.
14

0.
16

0.
18

0.
20

0.
22

0.
14

0.
15

0.
16

0.
17

0.
18

0.
06

5
0.

07
5

0.
08

5
0.

09
5

0.
14

0.
15

0.
16

0.
17

0.
18

0.
12

0.
14

0.
16

0.
18

0.
07

0.
08

0.
09

0.
10

0.
07

0
0.

08
0

0.
09

0
0.

10
0

0.
06

5
0.

07
5

0.
08

5
0.

09
5

0.
03

0
0.

04
0

0.
05

0

m
us

hr
oo

m
st

ub
by

th
in

(a) (b) (c)

Fig. 9. Estimates of the mark connection function (15) between each pair of types, for branch A, assuming
constant intensity of each type ( , pointwise envelope of the summary functions obtained from 39 simulations
of random labelling): (a) mushroom type; (b) stubby type; (c) thin type

domain. The resulting estimates of fj are shown in Fig. 7. Grey shading shows pointwise 95%
confidence intervals based on the asymptotic normal approximation. The horizontal broken line
shows the estimate by assuming that fj is constant. Rug plots (Tufte, 1983) show the observed
values d.xj/.

Formal tests of the hypothesis that fj is constant (assuming that equation (24) holds and that
the process is Poisson) are also available for spatial point processes (Berman, 1986; Lawson,
1988; Waller et al., 1992) and again these can be adapted immediately to linear networks. The
tests compare the observed distribution of the covariate d at the data points with the null
distribution of the covariate at a random point on the network. Table 1 shows the p-values
that were obtained for the Kolmogorov–Smirnov test and for Berman’s Z1- and Z2-tests. The
Z1-test statistic of Berman (1986) is a standardized version of Σi d.xi/ whereas the Z2-statistic
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Fig. 10. Second-order summaries of spine locations (regardless of type) in branch B by using inhomo-
geneous intensity estimate (25) ( , pointwise envelope of the summary functions obtained from 39 simula-
tions of an inhomogeneous Poisson process with the same estimated intensity): (a) centred inhomogeneous
K -function K̂ L,ih.r/� r plotted against r ; (b) inhomogeneous estimate of pair correlation function ρ̂L,ih.r/

is a standardized version of ΣiF0{d.xi/} where F0 is the cumulative distribution function of
d.U/ under the null hypothesis. The provisional conclusion is that the mushroom and stubby
spine types have constant intensity, but the intensity of the thin spines is increasing with greater
distance from the soma, in branch B.

6.2. Second-order analysis of dendrite branch A
Here we apply the methods of Section 4 to branch A of the dendritic spines data set that was
identified in Fig. 5. Branch A is tentatively believed to have uniform intensity of each spine type.
We assume that the underlying process is second order pseudostationary.

For estimating pair correlation functions, the smoothing kernel κ in equations (9), (17)
or (22) will be the Gaussian density, with standard deviation selected by Silverman’s rule of
thumb (Silverman (1986), page 48, equation (3.31)) although this seems to produce slight
undersmoothing.

Fig. 8 shows estimates of the geometrically corrected K-function KL.r/ and pair correlation
function ρL.r/ for the unmarked point pattern X. of spines regardless of type. Grey shading
represents the pointwise envelope of the summary functions that were obtained from 39 simula-
tions of a uniform Poisson process with the same estimated intensity. There is strong evidence of
spatial clustering (assuming uniform intensity), confirmed by formal Monte Carlo tests based
on the maximum absolute deviation or integrated squared deviation of the summary statistic
(Cressie (1991), page 667, equation (8.5.42), and Diggle (2003), page 12, equation (2.7)).

Fig. 9 shows the estimates (17) of the mark connection function pij.r/ of equation (15),
computed for the data in branch A. Grey shading shows the pointwise envelope of the estimates
that were obtained from 39 random patterns obtained by randomly permuting the spine-type
labels while holding the spine locations fixed. These plots and the associated Monte Carlo tests
suggest no evidence against the hypothesis of random labelling.

Thus a tentative conclusion for branch A is that spine locations have uniform intensity but
are spatially clustered; the distribution of spine types does not depend on location; and the types
of neighbouring spines are independent. The evidence for spatial clustering seems strong but is
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Fig. 11. Inhomogeneous multitype pair correlation functions ( ) for each pair of spine types in branch
B, together with envelopes of simulations from inhomogeneous random labelling, as explained in the text: (a)
mushroom type; (b) stubby type; (c) thin type

quite sensitive to misspecification of the intensity; for example, the strength of evidence depends
on how the network is divided into subbranches.

6.3. Inhomogeneous second-order analysis of branch B
Here we apply the methods of Section 5 to branch B of the dendritic spines data set that was
identified in Fig. 5. For branch B, the intensity function of X. is estimated by

λ̂..u/= λ̂1 + λ̂2 + f̂ 3{d.u/}, .25/

where λ̂1 and λ̂2 are the estimated intensities of mushroom and stubby spines respectively,
assuming that these are constant, whereas f̂ 3{d.u/} is the estimated intensity of thin spines at
a distance d.u/ from the cell body, assuming that equation (24) holds for the thin spines.
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Fig. 10 shows the estimated inhomogeneous K-function and inhomogeneous pair correlation
function for the unmarked pattern of spines of all types in branch B, using the estimated intensity
function λ̂..u/. It does not suggest any evidence of spatial clustering.

Fig. 11 shows the multitype pair correlation functions for each pair of spine types in branch
B, together with pointwise significance bands computed in the following way. Simulated point
patterns were generated by assigning new random types to the spines, holding their locations
fixed. For a spine at location u, the probabilities of assigning the labels mushroom, stubby and
thin were p1.u/= λ̂1=λ̂..u/, p2.u/= λ̂2=λ̂..u/ and p3.u/= f̂ 3{d.u/}=λ̂..u/ respectively. Figs 10
and 11 suggest no evidence against the null hypothesis of an inhomogeneous Poisson process.

In conclusion, there is strong evidence that different branches of the dendrite network may
have different patterns of spines. There are large branches within which the mushroom and
stubby spines appear to have uniform intensity. In some branches of the network (B and Z)
there is evidence that the intensity of thin spines is increasing with distance from the cell body.
In one branch (A) there is evidence of spatial clustering of the locations of spines, assuming
uniform intensity; this requires further investigation to validate the assumption of uniformity.
Conditionally on the spine locations, there is no evidence of dependence between the spine types.

7. Discussion

This paper has developed and demonstrated generic tools, based mainly on first and second
moments, for analysing a multitype point pattern on a linear network. In any field of statistics,
estimates of correlations or interactions are highly sensitive to misspecification of the first mo-
ment or main effect. This caveat also applies to spatial point processes (Bartlett, 1964) and in
particular to the data analysis in this paper.

For the application to dendritic networks, careful attention to the intensity was crucial. Visual
inspection of the raw and kernel-smoothed data suggested several new models for inhomoge-
neous intensity functions that are scientifically meaningful. The second-order analysis was highly
sensitive to the fitted intensity. This was not so with the other applications that we have studied
(Ang et al., 2012). It is conceivable that strong inhomogeneity is more likely to occur in tree-
like branching networks, such as the dendritic network, than in networks with loops, such as
road networks. Alternatively the dendrite example could be anomalous, perhaps by virtue of
the highly structured molecular and genetic messaging in the network.

A different analysis (Jammalamadaka et al., 2013), of a suite of data that included Fig. 1,
found a positive association between the types of immediately neighbouring spines, conditionally
on the spine locations. That analysis needs to be revisited to determine whether the positive
association still persists when the network is divided into homogeneous branches as we did
above. If it does persist, then the most likely explanation of the different conclusions from the
two analyses is that there is very short-range nearest neighbour dependence between spines.

Dendritic networks are three dimensional, but existing computational techniques for spatial
data on linear networks (Okabe and Sugihara, 2012) mostly assume that the network lies in
two-dimensional space. Fortunately, neurons in cell culture in vitro are almost flat, so we may
ignore the third dimension, except when resolving the connectivity of the network. Thus, existing
computational techniques are applicable to neurons in cell culture but would require algorithmic
modification to deal with neurons in vivo.

The data came from a designed experiment in which the ‘response’ for each experimental
unit is a point pattern. It is possible to pool first- and second-order summary statistics across
replicate point patterns (Baddeley et al., 1993; Bell and Grunwald, 2004; Diggle et al., 1991) but
additional methodology needs to be developed.
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Numerous caveats apply to the biological interpretation of our results. The findings of a cell cul-
ture experiment do not necessarily extrapolate to cells in vivo. However, subject to those caveats,
we have demonstrated evidence that different branches of a dendrite network appear to have
different, homogeneous, concentrations of spines. Evidence for clustering is at best equivocal.

A more searching analysis of the dendrite data would require the ability to fit explicit statistical
models to the data. Point process modelling on a linear network is under development and will
be demonstrated in a sequel paper.
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Appendix A: Proof of lemma 2

Let Z.r/=nij ρ̂L
ij.r/=|L| denote the double sum in equation (9). By the second-order Campbell formula (5)

E[Z.r/]=λiλj

∫
L

∫
L

κ{dL.u, v/− r}
m{u, dL.u, v/} ρL

ij.u, v/d1ud1v: .26/

For fixed u, the mapping v 
→dL.u, v/ is a piecewise linear function with unit Jacobian. Invoking the change
of variables ∫

L

h{dL.u, v/}d1v=
∫ ∞

0
h.t/m.u, t/dt .27/

for any measurable function h : [0, ∞/→R (shown in Ang et al. (2012)) equation (26) becomes∫
L

κ{dL.u, v/− r}
m{u, dL.u, v/} ρL

ij.u, v/d1v=
∫ ∞

0

∑
v:dL.u, v/=t

κ{dL.u, v/− r}
m{u, dL.u, v/} ρL

ij.t/dt

=
∫ ∞

0

∑
v:dL.u,v/=t

κ.t − r/

m.u, t/
ρL

ij.t/dt

=
∫ ∞

0

κ.t − r/

m.u, t/
m.u, t/ρL

ij.t/dt

=
∫ ∞

0
κ.t − r/ρL

ij.t/dt = ρ̄ij.r/

(provided that m.u, t/> 0 for all t< r) since the sum contains m.u, t/ terms. Hence

E[Z.r/]=λiλj|L| ρ̄ij.r/

and the result follows.
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Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate point processes
with hierarchical interactions. Ecol. Modllng, 220, 1232–1240.

Guan, Y. (2008) On consistent nonparametric intensity estimation for inhomogeneous spatial point processes. J.
Am. Statist. Ass., 103, 1238–1247.

Harkness, R. D. and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Appl. Statist., 32, 293–303.
Harnett, M., Makara, J., Spruston, N., Kath, W. and Magee, J. (2012) Synaptic amplification by dendritic spines

enhances input cooperativity. Nature, 491, 599–602.
Harris, K. and Kater, S. (1994) Dendritic spines: cellular specializations imparting both stability and flexibility

to synaptic function. A. Rev. Neursci., 17, 341–371.
Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Modelling of Spatial Point

Patterns. Chichester: Wiley.
Irwin, S., Patel, B., Idupulapati, M., Harris, J., Crisostomo, R., Larsen, B., Kooy, F., Willems, P., Cras, P.,

Kozlowski, P., Swain, R., Weiler, I. and Greenough, W. (2001) Abnormal dendritic spine characteristics in the
temporal and visual cortices of patients with Fragile-X syndrome: a quantitative examination. Am. J. Med.
Genet., 98, 161–167.

Jammalamadaka, A., Banerjee, S., Manjunath, B. and Kosik, K. (2013) Statistical analysis of dendritic spine
distributions in rat hippocampal cultures. BMC Bioinform., 14, article 287.

Kingman, J. (1993) Poisson Processes. New York: Oxford University Press.
Kvilekval, K., Fedorov, D., Obara, B., Singh, A. and Manjunath, B. (2010) Bisque: a platform for bioimage

analysis and management. Bioinformatics, 26, 544–552.
Lawson, A. (1988) On tests for spatial trend in a nonhomogeneous Poisson process. J. Appl. Statist., 15, 225–

234.



22 A. Baddeley, A. Jammalamadaka and G. Nair

van Lieshout, M. and Baddeley, A. (1999) Indices of dependence between types in multivariate point patterns.
Scand. J. Statist., 26, 511–532.

Lotwick, H. W. and Silverman, B. W. (1982) Methods for analysing spatial processes of several types of points. J.
R. Statist. Soc. B, 44, 406–413.

Mamaghani, M., Andersson, M. and Krieger, P. (2010) Spatial point pattern analysis of neurons using Ripley’s
K-function in 3D. Front. Neurinform., 4, no. 9, 1–10.

McSwiggan, G., Baddeley, A. and Nair, G. (2013) Kernel smoothing on a linear network. To be published.
Millet, L., Collens, M., Perry, G. and Bashir, R. (2011) Pattern analysis and spatial distribution of neurons in

culture. Integr. Biol., 3, 1167–1178.
Nimchinsky, E., Sabatini, B. and Svoboda, K. (2002) Structure and function of dendritic spines. A. Rev. Physiol.,

64, 313–353.
Ohser, J. and Stoyan, D. (1981) On the second-order and orientation analysis of planar stationary point processes.

Biometr. J., 23, 523–533.
Okabe, A. and Satoh, T. (2009) Spatial analysis on a network. In The SAGE Handbook on Spatial Analysis (eds

A. Fotheringham and P. Rogers), ch. 23, pp. 443–464. London: Sage.
Okabe, A., Satoh, T. and Sugihara, K. (2009) A kernel density estimation method for networks, its computational

method and a GIS-based tool. Int. J. Geog. Inform. Sci., 23, 7–32.
Okabe, A. and Sugihara, K. (2012) Spatial Analysis along Networks. Hoboken: Wiley.
Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational implementation.

Geog. Anal., 33, 271–290.
Pedro, N., Carmo-Fonseca, M. and Fernandes, P. (1984) Quantitative analysis of pore patterns on rat prostate

nuclei using spatial statistics methods. J. Microsc., 134, 271–280.
Ripley, B. (1976) The second-order analysis of stationary point processes. J. Appl. Probab., 13, 255–266.
Ripley, B. D. (1977) Modelling spatial patterns (with discussion). J. R. Statist. Soc. B, 39, 172–212.
Rodriguez, A., Ehlenberger, D., Dickstein, D., Hof, P. and Wearne, S. (2008) Automated three-dimensional

detection and shape classification of dendritic spines from fluorescence microscopy images. PLOS ONE, 3,
article e1997.

Shiode, S. and Shiode, N. (2009) Detection of hierarchical point agglomerations by the network-based variable
clumping method. Int. J. Geog. Inform. Sci., 23, 75–92.

Silverman, B. (1986) Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
Tufte, E. (1983) The Visual Display of Quantitative Information, 1st edn. Cheshire: Graphics Press.
Waller, L., Turnbull, B., Clark, L. and Nasca, P. (1992) Chronic disease surveillance and testing of clustering of

disease and exposure: application to leukaemia incidence and TCE-contaminated dumpsites in upstate New
York. Environmetrics, 3, 281–300.

Wearne, S., Rodriguez, A., Ehlenberger, D., Rocher, A., Henderson, S. and Hof, P. (2005) New techniques for
imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience,
136, 661–680.

Webster, S., Diggle, P., Clough, H., Green, R. and French, N. (2005) Strain-typing transmissible spongiform en-
cephalopathies using replicated spatial data. In Case Studies in Spatial Point Process Modeling (eds A.Baddeley,
P. Gregori, J. Mateu, R. Stoica and D. Stoyan), pp. 197–214. New York: Springer.

Xie, Z. and Yan, J. (2008) Kernel density estimation of traffic accidents in a network space. Comput. Environ. Urb.
Syst., 32, 396–406.

Yadav, A., Gao, Y., Rodriguez, A., Dickstein, D., Wearne, S., Luebke, J., Hof, P. and Weaver, C. (2012) Mor-
phologic evidence for spatially clustered spines in apical dendrites of monkey neocortical pyramidal cells. J.
Compartv. Neurol., 520, 2888–2902.

Yuste, R. (2011) Dendritic spines and distributed circuits. Neuron, 71, 772–781.


