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ABSTRACT

Many features used in the analysis of pathology imagery are inspired
by grading features defined by clinical pathologists as important for
diagnosis and characterization. A large majority of these features are
features of cell nuclei; as such, there is often the desire to segment
the imagery into individual nuclei prior to feature extraction and fur-
ther analysis. In this paper we present an analysis of the utility of
imperfectly segmented cell nuclei for classification of H&E stained
histopathology imagery of breast tissue. We show the object- and
image-level classification performance using these imperfectly seg-
mented nuclei in a benign versus malignant decision. Results in-
dicate that very good classification accuracies can be achieved with
imperfectly segmented nuclei and further that perfect nuclei segmen-
tation does not necessarily guarantee better classification accuracy.

Index Terms— Histopathology, medical image analysis, nuclei
segmentation, breast cancer, H&E

1. INTRODUCTION

The segmentation of cell nuclei on an object level in histopathol-
ogy imagery is a very difficult problem. Many nuclear segmenta-
tion algorithms make use of immunostaining for more specific loca-
tion of cellular structures [1], the Feulgen stain which is specific to
DNA [2–4], or even the physical extraction of nuclei prior to image
acquisition [3]. The use of cytology imagery is more often addressed
since this provides a less complicated image structure with more in-
stances of isolated cells and/or well-delineated cell clusters [5–7].

The use of automated nuclear segmentation algorithms on stan-
dard H&E histology imagery is rarer and has met with mixed suc-
cess [8, 9]. Semi-automated or even manual nuclear segmentation is
still used in some research, even for the more specific Feulgen stain-
ing protocol [2–4], immunohistochemical staining [1], and cytology
imagery [6]. This indicates the inherent difficulty in segmentation of
nuclei and also indicates the desire for appropriately segmented nu-
clei for further nuclear-based quantitative analysis (e.g., classifica-
tion of cancer imagery). Automated segmentation is more desirable,
however, for ultimate use in computer-aided diagnosis systems since
it does not require extensive user interaction.

In this paper, we investigate the use of imperfectly segmented
nuclei for the classification of H&E-stained histopathology imagery
of breast cancer. We describe the imagery in Section 2. In Section 3
we desribe an automated pixel-level classifier to determine the nuclei
pixels, and several automated segmentation algorithms to delineate
the individual nuclei. Comparisons of object- and image-level classi-
fication performance using different segmentations are presented in
Section 5. We conclude and briefly discuss future work in Section 6.

2. IMAGERY

Our dataset contains 58 Hematoxylin and Eosin (H&E) histopathol-
ogy images of breast tissue from the Yale Tissue Microarray Facility.
The data was captured from 5 microarrays (ytma10, 12, 49, and 55),
with (6, 6, 34, and 6) images captured per array, respectively; in to-
tal we have 26 malignant images, and 32 benign (including 6 normal
from ytma55). These 58 images are not microarray images in the
general sense since they are single histopathology images as might
be obtained from standard clinical biopsy specimens. The images
were labeled benign or malignant by an experienced pathologist.

As acquired, the images are multispectral with 29 bands, rang-
ing within the visible spectrum from 420 to 700 nm, spaced 10 nm
apart, acquired with a liquid crystal tunable filter and a typical clin-
ical pathology microscope setup with a 40x objective. Each band is
represented in an image stack as an 8 bit, 768×896 grayscale image.

The 29-band multispectral images are converted to represen-
tative RGB images by converting the light wavelengths into con-
stituent red, green, and blue values based on a modification of a
standard color matching method [10]. The second lobe in the red
response (due to human perception of violet as a combination of
red and blue) was removed to better match the spectral responses
of common 3-CCD color cameras. The success of the conversion
process in maintaining spectral characteristics of the H&E dyes was
further validated by qualitative observation of an experienced pathol-
ogist. A portion of an example derived RGB image is in Fig. 1 (a).

3. SEGMENTATION OF NUCLEI

In this section, we describe the nuclei segmentation methods that we
apply to our data. We also briefly describe the pixel-level classifi-
cation of nuclei pixels and the metric of segmentation performance
used to analyze the segmentation algorithms. We define segmenta-
tion very specifically as the delineation of individual objects (nuclei)
in an image; we refer to the partitioning of the image into nuclei and
non-nuclei regions as pixel-level classification of nuclei.

3.1. Pixel-Level Classification of Nuclei

In [11] we presented the pixel-level classification of nuclei for this
same dataset. For the work presented here, we use the results of the
Fisher linear discriminant analysis classifier, since it had one of the
highest overall performances. This supervised classification method
uses solely spectral information from training data to determine a
classifier. We found the pixel-level classification performance on
both training and test data to be approximately equivalent, so we
use both training and test images for subsequent segmentation. An
example pixel-level classification is shown in Fig. 1 (b).
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(a) Derived RGB image. (b) Original binary image (pixel-
level classification).

(c) WSCDT, P = 0.24. (d) WSGran, r = 4, P = 0.28. (e) CB, P = 0.24.

Fig. 1. (a) Derived RGB image, (b) binary image, and example (c) WSCDT, (d) WSGran, and (e) CB segmentations with associated
segmentation performance metric P .

3.2. Segmentation Performance Metric

As a measure of segmentation performance, we use the measure de-
scribed in [12]. Briefly, this measure penalizes, on an object-by-
object basis, deviations in size and shape between the segmented
objects and the ground truth objects. As ground truth, the nuclei are
individually delineated manually in a ∼ 200 × 200 window cho-
sen to be the most representative of the range of nuclei appearances
within the entire image. The measure P lies in the range [0,1], with
1 being a perfect segmentation.

3.3. Watershed-Based Segmentation of Nuclei

For the watershed-based segmentation of nuclei, we use the water-
shed transform of the complemented Euclidean distance transform
on a binary image of nuclei pixels. The binary image is the output
of a pixel-level classifier for nuclei pixels as discussed above. This
method yields an average performance of 0.15 ± 0.17. An example
WSCDT segmentation is shown in Fig. 1 (c).

3.4. Marker-Based Watershed Segmentation of Nuclei

Granulometries are a common technique to elicit information about
the size distribution of objects in an image. Granulometries are
calculated by applying successively larger structuring elements in
a morphological image operation and analyzing the residue image.
More specifically, we use the morphological opening of a binary im-
age with a disk-shaped structuring element (SE).

We compute watershed transforms with minima of the input im-
age imposed according to foreground and background markers:

• Foreground markers: We use image residues from structuring
elements of varying radii. These markers serve as an approx-
imation of the center of the binary objects.

• Background markers: We use the erosion of the complement
of the original binary image with a discrete circle of radius 3
These markers impose a minima in all parts of the background
of the binary image. The erosion operator creates a separation
between the background markers and the object boundaries.

The performance of the watershed using granulometry-based
markers (WSGran) method increases with SE radius up to a r = 4

pixels, followed by a decrease in performance. The maximum av-
erage performance of the WSGran method is 0.28 ± 0.19. Fig. 1
(d) shows an example segmentation for SE radius r = 4. We note
qualitatively here that the WSGran segmentation yields fewer small
regions compared to the WSCDT segmentation. This can be seen in
the many merged nuclei in Fig. 1 (d) compared to Fig. 1 (c).

3.5. Concavity-Based Segmentation of Nuclei

Motivated by observations that shape is a large factor in humans’
ability to properly discriminate individual nuclei, we use the method
in [13] which uses concavities as the basis for segmentation lines.

The concavity-based (CB) segmentation method of Kumar et
al. [13] uses a rule-based approach for the segmentation of binary ob-
jects, beginning with a measure of concavity depth. In this method,
the segmentation of one binary blob into multiple constituent objects
is accomplished with the use of a “split line.” A split line may occur
between two object concavities, or between a single concavity and
the opposite object boundary. Binary objects are split recursively
until no further valid split lines are found.
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Using our implementation of the concavity-based segmentation
method of Kumar et al. [13], we find very poor performance (0.03±

0.08). Referring to the example segmentation shown in Fig. 1 (e),
it appears that the CB method is penalized for splitting single nuclei
into multiple objects and for including small regions as objects.

4. FEATURE EXTRACTION, FEATURE SELECTION, AND
CLASSIFICATION

4.1. Feature Extraction

The extraction and use of relevant image features for automated
analysis of cancer imagery is a topic of great interest. Research
on useful features for cancer classification and diagnosis has often
been approached by the definition of features flagged by clinicians
as important features for the diagnosis process. The vast majority
of these features are nuclear features. We use a comprehensive set
of object-level features as described in [14] for the classification of
histopathology imagery, resulting in a total of 1035 features per im-
age object (nucleus). We apply feature extraction and selection to
the segmented nuclei of Section 3.

4.2. Feature Selection

Feature selection is a means to select the relevant and important fea-
tures from a large set of features, many of which may be redundant,
irrelevant, or possibly detrimental to the classification performance.
While humans have innate abilities to process and understand im-
agery, they do not tend to excel at explaining how they reach their
decisions. As such, large feature sets are generated in the hopes that
a subset of features incorporates the information the human expert is
using for analysis.

Grafting (from “gradient feature testing”) [15] is used as the fea-
ture selection method for this work. Grafting is based on a formula-
tion of the feature selection problem whereby the classification of the
underlying data and the feature selection process are not separated.
Within the grafting framework, a loss function shows preference for
classifiers with larger margins. We use a linear classifier in this work.
Feature extraction and feature selection is computationally intensive
for training, but feature selection allows for a streamlining of the
feature extraction process for test imagery.

5. RESULTS

5.1. Object-Level Classification Performance

The grafting method of feature selection was applied to the WSCDT,
WSGran (r = 4), and CB nuclear segmentations. Additionally,
grafting was applied to a simple connected-components analysis
(CC), and to the ground truth markup (GT). The area of ground
truth markup within the image is used for analysis of object-level
performance. This ∼ 200 × 200 window is the same window used
for the pixel-level classification in [11], and encompasses an average
of 50 nuclei per image. It should be noted, however, that the number
of segmented objects may be more or less than the total number
of ground truth nuclei in each image. The resulting feature subsets
contain between 51 and 88 features out of the 1035 total.

The performances (percentage of segmented objects correctly
classified) on the training and test data are presented in Table 1; train-
ing data are images used for the feature selection process, while test
data are images unseen in the feature selection process. Each training
and test dataset contains a randomly chosen half of the benign and

Table 1. Object-level feature subset performance (% correctly clas-
sified objects), when all objects in malignant imagery are considered
malignant.

CC WSCDT WSGran CB GT
Training 0.68 0.72 0.70 0.69 0.85

Test 0.73 0.69 0.69 0.73 0.74

Table 2. Object-level feature subset performance (% correctly clas-
sified objects), when only pathologist delineated regions in malig-
nant imagery are considered to contain malignant objects.

CC WSCDT WSGran CB GT
Training 0.60 0.69 0.66 0.66 0.78

Test 0.54 0.68 0.65 0.68 0.72

malignant imagery. Within Table 1, the assumption is that all objects
in the benign (malignant) images are benign (malignant). Object-
level performances are also presented in Table 2, with the assump-
tion that only objects within a pathologist delineated region of ma-
lignant imagery are malignant. All objects outside the pathologist-
specified region of malignancy are excluded from further analysis.
Object-level classification for the whole 768×896 pixel image yield
very similar performance to those of the ∼ 200 × 200 windows.

Interestingly, in all these results there is no clearly superior seg-
mentation method. This would seem to indicate that a feature se-
lection scheme can make use of the information contained in many
different (and possibly poor) segmentations. Overall, however, it
does not appear that too much information is lost or obscured with
improperly segmented nuclei. Our results also compare favorably
with the results on Feulgen-stained nuclei in breast cancer [4, 16].

5.2. Image-Level Classification Performance

It is the image-level classification performance that is often ulti-
mately of interest. For this level of classification, however, there
must be a threshold on the percentage of malignant objects before
the entire image is considered malignant. Image-level performances
are thus demonstrated with Receiver Operator Characteristic (ROC)
curves, varying the threshold of malignant objects for which an im-
age is considered malignant. Thus, an image is considered malig-
nant for some percentage of malignant objects present, where this
percentage ranges between 0 and 100. This allows for a tradeoff be-
tween the True Positive Rate (TPR) and False Positive Rate (FPR).

ROC curves for the test imagery are shown in Fig. 2, for the
segmented objects in the ∼ 200 × 200 pixel ground truth window.
Image-level results for segmented objects in the entire 768×896 im-
age yield very similar image-level performance to the performance
computed over the ∼ 200 × 200 window. The area under the curve
(AUC) for each ROC curve is also shown in Fig. 2. The image-level
performance using object-level features is very good, resulting in
AUC values above 0.80 in most cases. The CB method provides the
largest AUC value of 0.93, while the lowest is for with CC segmen-
tation with an AUC of 0.80. A perfect nuclear segmentation (GT)
yields an image-level performance with an AUC of 0.92.

It is interesting that many automatic segmentations provide
image-level performances closer to that of GT as compared to the
object-level performances in Section 5.1. This is most likely due to
a different trade-off between TPR and FPR provided by the various
segmentations due to different total number of segmented objects.
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(a) Assuming all objects in malignant imagery are malignant.
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(b) Assuming objects within pathologist-specified region are malignant.

Fig. 2. ROC curves for image-level performance on test images.

6. CONCLUSION

It has been demonstrated that the comprehensive set of object-
level features used herein are versatile and general enough to elicit
important information from imperfectly segmented objects. This
was demonstrated with object- and image-level classification perfor-
mance for ground truth nuclei and for several nuclear segmentations.

Using object-level features and the grafting method of feature
selection, we have shown object-level classification accuracies above
0.70 for test data. These results are comparable to others presented
in the literature, namely [16] and [4], which relied on the more spe-
cific Feulgen staining protocol and the interactive selection of well-
segmented nuclei. We hypothesize that it is the use of a comprehen-
sive set of features that allows for the use of imperfectly segmented
objects for this particular application. We have also shown image-
level performances with AUC values greater than 0.80.

Ongoing work is investigating the analysis of feature subsets
for insight into underlying characteristics of benign and malignant
imagery. Future work will look at the application of these object-
level feature extraction and selection methods to other histopathol-
ogy datasets, as well as datasets from other application domains, e.g.
imaging calorimeters. Furthermore, we are using cross-validation
techniques and a simple tile-based “segmentation.”
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