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Abstract

Automated Microtubule Tracking and Analysis

by

Motaz El-Saban

Microtubules are major components of the cytoskeleton and play an important role

in a number of cellular functions such as maintaining cell shape, cell division and trans-

port of various molecules. Abnormal dynamic behavior of microtubules has been as-

sociated with neuro-degenerative diseases (e.g., Alzheimer) and cancer. Researchers

study the dynamics of microtubules under different experimental conditions includ-

ing different drug treatments, and using time sequence images from fluorescence mi-

croscopy. At present the dynamics of microtubules are quantified using simple first

and second-order statistical measures of the length variations of manually tracked mi-

crotubules. The current analysis being mostly done manually, is quite laborious and

time-consuming. Besides, the number of microtubules that one can track with manual

methods is limited. In the first part of the thesis, we propose novel tools for auto-

mated detection and tracking of microtubules. A multiframe graph-based approach is

proposed to tackle tracking issues, and our results demonstrate the robustness of the

proposed approach to occlusions and intersections.

In the second part of the thesis, we propose the use of statistical modeling tools for

a better understanding of the underlying molecular mechanisms of microtubule dynam-

ics. Prototype models are estimated for various experimental conditions by training

ix



hidden Markov models (HMMs) on the microtubule tracking data. Furthermore, these

models are used to quantify similarities between experimental conditions. Addition-

ally, temporal association rules are derived to characterize frequent patterns in the mi-

crotubule dynamics under different experimental conditions. The extraction of frequent

patterns leads to a better understanding of how an experimental condition, such as the

application of a drug, modulates microtubule dynamics.
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Chapter 1

Introduction and Motivation

Recent advances in cell biology research and the emergence of new microscopy tech-

niques that are able to image cells at the molecular level have resulted in large col-

lections of digital bio-molecular images and videos. The vast majority of the image

analysis, at present, is done manually. However, in order to fully harvest the informa-

tion present in the growing number of image/video collections –both qualitatively and

quantitatively – much progress is needed on the automated analysis of the data. Our

primary goal in this thesis is to develop new computer vision and information extrac-

tion tools that can facilitate the analysis of bio-molecular image sequences. While the

specific datasets that we study here are concerned with subcellular structures known

as microtubules and their dynamics, the basic tools that we develop are applicable to a

broader class of such images.
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Chapter 1 Introduction and Motivation

1.1 Microtubule Data

Microtubules (MTs) are cylindrical, protein polymers found in essentially all eukary-

otic cells. Microtubules are one of the components of the cytoskeleton – the cell skele-

ton. Microtubules are composed of two subunits of monomers, the α and β tubulin

protein. Microtubules are highly dynamic polymers in the sense that their ends can be

growing (polymerizing) or shortening (depolymerizing) depending on the needs of the

cell. Polymerization (depolymerization) is the process by which new polymer units are

added (subtracted) from an existing microtubule at one of its ends. This result in either

growing or shortening of the microtubule.

Investigators generally visualize microtubule dynamics in cells using time-lapse flu-

orescence microscopy of cells that have been engineered to possess fluorescent tubulin.

Time-lapse fluorescence is a microscopy technique used for imaging live cells. Image

frames are acquired at regular time intervals by illuminating the biological sample with

a beam of light. As a result, the tubulin structures in the cells emit back, by fluores-

cence, another light wave that is imaged by the microscope. The image sequences used

in this thesis are taken at 4 second intervals, with about 30-60 frames per stack of im-

ages. Fig. 1.1 shows two sample frames in such a sequence. The image frames have

dimensions of 512 × 600 pixels with one pixel corresponding to a 100 nM × 100 nM

area (approximately) and an intensity resolution of 12 bits/pixel.

The observations that are of interest here include the growth and shortening of these

tiny hair-like structures over a period of time for a specific experimental condition such

2



Chapter 1 Introduction and Motivation

a microtubule

Figure 1.1: Top: frame 4 (right) and 24 (left) from a microtubule stack. Bottom:

zoom-in on the same area in both frames. The small windows show the high

level of noise, contrast and illumination changes between the two frames and the

significant “growth” of a microtubule.

3



Chapter 1 Introduction and Motivation

as the administration of a drug (See Fig. 1.1). The current approach used to quan-

tify the growth and shortening of microtubules is to record the length of microtubules

in every frame of a stack. The microtubule length is approximated by the Euclidean

distance between the microtubule tip and a fixed reference point. The position of the

microtubule tip is manually tracked from frame to frame. From the length computation

in the video frames, simple statistical averages of dynamic parameters, such as growth

and shortening rates, are computed. More details on the imaging of the microtubules

and their dynamics are discussed in Chapter 2.

1.2 Data Analysis Issues

The extraction of dynamic parameters from microtubule videos under a given exper-

imental condition consists of manual tip tracking and the computation of first order

statistical measures. There are several issues in both the manual tracking and dynamic

parameter computation:

• The manual tracking is laborious and time consuming. Hence, usually a relatively

small number of microtubules are tracked per stack. This leaves open the question

of whether or not current sampling provides a sufficient number of representative

microtubules for drawing reliable conclusions.

• Manual tracking can be subjective and introduces inter-observer variations. Two

individuals asked to track the same microtubule can mark different tip positions

4



Chapter 1 Introduction and Motivation

depending on their accuracy and the image noise level.

• The length of a microtubule is currently approximated by computing the Eu-

clidean distance between the tip location and an arbitrarily selected reference

point on the microtubule body. This length computation is inaccurate since the

microtubule shape is not always a straight line because microtubules can bend

or move laterally from frame to frame (See Fig. 1.2). A more accurate method

would compute the length as the shortest path along the microtubule body (i.e. a

geodesic).

• It is difficult to test hypotheses on large volumes of stacks such as analyzing the

effect of different test conditions on microtubule shape, or quantifying the effect

of neighboring microtubules as only the microtubule ends are currently recorded.

• The simple first order statistical parameters computed may not uncover critical

factors affecting microtubule dynamics. Using advanced statistical tools and pat-

tern mining techniques, one may discover fundamentally important but less ob-

vious information.

Based on the above issues, we will discuss next the major challenges that face the

areas of potential benefit for the application of intelligent information processing tech-

niques for microtubule dynamic studies.

5



Chapter 1 Introduction and Motivation

(a)

Euclidean: a linear approximation

A geodesic on the MT body: more 
accurate length measure

Euclidean: a linear approximation

A geodesic on the MT body: more 
accurate length measure

(b)

Figure 1.2: Estimation of the length of a microtubule is currently based on the

Euclidean distance between the tip and a reference point. The original frame

shown in (a), while (b) shows the inaccuracy of approximating the microtubule

length using a Euclidean distance. A better length estimate computes the distance

as the shortest path along the microtubule body (i.e. a geodesic).

1.3 Information Processing Tasks

1.3.1 Enhancement and Segmentation of Microtubule Frames

Given the low signal-to-noise ratio, nonuniform illumination, photo-bleaching and out-

of-focus problems typical to time-lapse fluorescent microtubule videos, a crucial step in

automated processing of these frames is to enhance their quality for further processing.

Additionally, researchers generally track microtubules near the cell periphery so as to

maximize the resolution of each microtubule. Hence, in order to automate the process

of detection and tracking of microtubules, we need to first extract the cell region that

contains peripheral microtubules through image/video segmentation.

6
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1.3.2 Automating Microtubule Tracking

Automating the detection and tracking of microtubules in videos is an obvious first task.

With an automated approach, one should be able to track more microtubules in a given

video than manually feasible. Further, it removes the potential subjective bias in the

manual tracking process. As we noted before, microtubules appear as tubular structures

in the image frames. The shape of microtubules varies widely within the same cell.

An accurate estimation of the length of the microtubule should take into account its

curvilinear structure. The currently widely used manual tip tracking and computing the

associated statistics ignores this effect. In addition, microtubules undergo large changes

in length from frame to frame because of growth or shortening at either microtubule

end. These large changes in length, together with frequent occlusions, pose significant

problems to any tracking method. Further, the images of microtubules have a low

signal-to-noise ratio and exhibit nonuniform illumination both spatially and temporally,

adding to the difficulty in their detection and tracking.

1.3.3 Detecting Non-obvious Patterns and Similarities

By developing automated tracking tools for microtubule videos, a large volume of

tracking data will become available for further processing. Questions related to com-

mon behavior between different experimental conditions can be answered with a high

degree of statistical significance due to the availability of a large volume of data. For

example, construction of models for microtubule behavior may be very useful for pre-

7



Chapter 1 Introduction and Motivation

dicting microtubule behavior under test conditions that have not been experimentally

assessed before. Additionally, by applying data mining tools on the tracking data, tem-

poral and spatial patterns of dynamics can be extracted for different conditions. As an

example, patterns of microtubule dynamics can be used to understand how a drug of

interest affects microtubule behavior.

1.4 Summary of Contributions

We present in this thesis a set of new computational tools that target the above informa-

tion processing challenges. Specifically we made contributions in the following areas

of automated analysis of microtubule dynamics:

1. Extraction of the cell layer containing microtubules of interest.

2. Automated microtubule detection in a single frame.

3. Fully automated tracking of microtubules.

4. Modeling and pattern discovery in microtubule videos using statistical tools.

1.4.1 Microtubule Layer Detection

Since the microtubule polymer mass near the nucleus is usually very high, resulting

in high fluorescence strength, one cannot resolve individual microtubules in the center

region of the cell. Hence, we are usually interested in microtubules growing or short-

ening near the cell membrane. We present an automated technique to extract a band

8
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around the cell membrane -the microtubule layer- through temporal clustering in the

frequency domain. We consider the microtubule video of T frames as a spatiotemporal

volume. We construct frequency vectors at each pixel location (x, y) on the first frame.

The frequency vectors are clustered into V clusters corresponding to regions of vary-

ing activity in the cell. Finally, we extract the clusters corresponding to the region of

highest activity, which we call the microtubule layer. The microtubule layer extraction

is detailed in Chapter 3.

1.4.2 Microtubule Detection

After extracting the microtubule layer, we present an automated approach to detect

microtubules in this layer. The basic assumption about microtubules that enables ex-

tracting a binary mask of microtubule locations is that microtubules look as black curvi-

linear structures on a light background in an ideal scenario. We present a filtering-based

approach to detect the microtubule polymer mass. A second derivative of Gaussian ker-

nel matched to image locations at different orientations should reveal the microtubule

structure while reducing background noise. Based on the filtering output, we extract

a microtubule polymer mass binary mask, from which we devise an approach to de-

tect microtubule tips that are used in subsequent tracking. The details of microtubule

detection are provided in Chapter 3.
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1.4.3 Fully Automated Tracking of Microtubules

Given the limitations of the current manual approach to track microtubules in videos,

we propose a fully automated, robust tracking technique in Chapter 4. The technique

performs well under low signal to noise ratio, varying illumination conditions and can

handle occlusions and intersections. By performing a simultaneous tracking for all the

microtubules and for the full time duration of the video, we are able to resolve tracking

conflicts and to overcome microtubule tip occlusion and mis-detection. This global

approach is formulated in a graph-based context.

1.4.4 Modeling and Pattern Discovery

The above contributions deal with the automation of the tracking step while not at-

tempting to provide new analysis tools to microtubule studies. Using the tracking data,

we propose new tools that can further our understandings of the underlying cell regu-

latory mechanisms for microtubule dynamics. Towards this end, we propose the use of

of hidden Markov models (HMMs) as a powerful statistical modeling tool to describe

microtubule tracking observations. By modeling microtubule behavior using HMMs,

we are equipped with a measure of similarity between effects of different test subjects -

such as regulatory microtubule associated proteins (MAPs) and drugs - on microtubule

dynamics. Furthermore, we propose a temporal rule mining algorithm that can detect

common pattern of dynamics for different experimental conditions, thus providing pre-

viously unattainable valuable information to biologists. The proposed modeling and

10
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pattern discovery tools for microtubule videos are detailed in Chapter 5.

1.5 Dissertation Outline

The thesis is organized as follows. Chapter 2 presents details on the current techniques

used to image and analyze microtubule dynamics, and some recent examples of micro-

tubule studies. The steps used for microtubule sample preparation are also discussed.

Chapter 3 reviews the related work on automated microtubule detection and tracking.

It gives an overview on relevant related work on object tracking using active contours

and curvilinear structure tracking. In addition, Chapter 3 presents our new method for

extracting tip features from microtubule videos. Chapter 4 gives a detailed description

of the new tracking approach based on spatio-temporal approach for all microtubules.

The tracking is formulated using a graph context augmented with an active contour to

handle lateral microtubule motion. Qualitative and quantitative experimental results are

presented for microtubule tracking. Chapter 5 details the proposed methods for tem-

poral pattern extraction and modeling of microtubules, thus introducing new analysis

tools not previously available. The models and rules constructed agree with biological

findings and provide novel insights into cell mechanisms for regulating microtubule dy-

namics. Furthermore, the constructed models of microtubule dynamics can be used to

quantify commonalities between different experimental conditions. Finally, summary

and future research directions are outlined in Chapter 6.
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Chapter 2

Imaging and Studying Microtubules

A detailed review of current research on microtubule dynamics is presented in this

chapter. The chapter begins with a detailed description of the structure and function of

microtubules and how they are important for cell biology and the cell cycle. We then

discuss three recent representative research studies on microtubule dynamics to provide

the reader with a perspective on the current state-of-the art. Next, we present the two

stages involved in obtaining microtubule videos, those being: a) sample preparation and

b) microscopy imaging of dynamics. Finally, we list the main parameters describing

microtubule dynamics.

2.1 Structure and Function of Microtubules

Microtubules (MTs) are protein polymers corresponding to one of three major compo-

nents of the cytoskeleton – the cell skeleton. In terms of structure, microtubules are
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hollow cylinders of 15 nm and 25 nm internal and external diameters respectively. The

length of the microtubules can extend up to 1000 times its diameter. The hollow tube

is composed of α tubulin - β tubulin dimer subunits. A schematic of a microtubule is

shown in Fig. 2.1.

The α and β tubulins exist as different isotypes at the protein level such as αI , αII ,

βI and βIII . The different isotypes vary in terms of their structure. One full turn of a

microtubule is made out of 13 individual tubulin molecules. The microtubule has two

ends distinctly noted as the plus and minus ends (See Fig. 2.1). The distinction between

the two ends gives the rise to the polarized structure to the microtubules. Microtubules

are constantly increasing and decreasing in length through addition and loss of subunits

at their ends, a phenomenon called dynamic instability. A particular case occurs when

the plus end is polymerizing at the same rate that the minus end is depolymerizing,

which is called treadmilling. This phenomenon gives the appearance of a net motion of

the microtubule.

In cell biology, an important concept is that structure determines function. Micro-

tubules are no exception. Tubular in structure and highly dynamic, microtubules are

essential for numerous critical cellular functions, including various intracellular trans-

port processes, cell movement and cell shape changes. For example, motor proteins,

bind to microtubules and “read” its polarity and move from one end to the other, thereby

delivering cargo to specific cellular domains. Especially notable among the many func-

tions of microtubules is the essential role of microtubules in separating chromosomes to
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Tubulin dimer

Microtubule 

A protofilament

plus end

minus end

Tubulin dimer

Microtubule 

A protofilament

plus end

minus end

Figure 2.1: A schematic of an example microtubule showing the cylindrical

structure and the constituting dimers (α and β tubulin shown as light and dark

green spheres respectively (after [8]).

14



Chapter 2 Imaging and Studying Microtubules

the two daughter cells during cell division. Recent work has demonstrated convincingly

that proper regulation of the growing and shortening dynamics of microtubules is essen-

tial in order to achieve proper chromosome segregation (reviewed in [62]). Indeed, the

highly effective anti-cancer drug paclitaxel works because it suppresses microtubule dy-

namics sufficiently to interfere with normal chromosome segregation. Recent work has

also suggested that mis-regulation of microtubule dynamics may underlie Alzheimer’s

disease and related dementias (reviewed in [43]). Thus, the regulation of microtubule

dynamics is a key element in both normal and pathological cell biology.

2.2 Research on Microtubule Dynamics

Owing to their many important roles, many research groups study microtubules in

terms of structure, function and dynamic behavior under different experimental con-

ditions [32], [38], [65], [97], [107]. Different agents can affect the dynamic behavior of

microtubules. Example of such agents include microtubule associated proteins (MAPs)

such as tau, MAP1A and MAP1B and drugs such as paclitaxel, colchicine, epothilone B

and vinblastine. We used microtubule videos from [65] and [38] for the results reported

in this thesis in Chapter 4 and Chapter 5.

2.2.1 Effect of Tau on Microtubule Dynamics

One class of microtubule associated proteins (MAPs) binds to microtubules and regu-

lates their dynamic behavior. For example, the neural microtubule-associated protein
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tau binds and stabilizes microtubules. Tau exists in two isoforms, known as 3-repeat

and 4-repeat tau. While only 3-repeat tau is expressed in fetal brains, both 3- and 4-

repeat tau are expressed in adult human brain at approximately equal levels. When the

ratio between 3-repeat and 4-repeat tau is altered as a result of genetic mutation, neuro-

degenerative diseases occur such as FTDP-17. In the study by Bunker et al. [13], the

authors investigated how both isoforms of tau regulate microtubule dynamics. It is ob-

served that though both tau isoforms regulate dynamics, there are important differences.

For example, 3-repeat tau has very little effect on the shortening rate of microtubules,

whereas 4-repeat tau potently suppressed it.

2.2.2 Suppression of Microtubule Dynamics using Epothilone B

One important focus of microtubule dynamic studies is to discover potential novel anti-

cancer drugs by virtue of their ability to block cell division. Towards this end, the study

in [65] targets the Epothilone B compound. The dynamic behavior of microtubule is

quantified in terms of the percentage of cells that are blocked from continuing through

mitosis – one of key the stages in cell division. The main idea is that if a cell is blocked

at mitosis, then tumor cell proliferation is blocked. Epothilone B is observed to suppress

microtubule dynamics in a concentration dependent manner. At a concentration of 0.2

nM (nano molar), there is no mitotic arrest, whereas at 3.5 nM, there is half maximal

arrest.
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2.2.3 Effect of β-III on Resistance to Paclitaxel

It has been experimentally determined that paclitaxel suppresses microtubule dynamics.

This is the main reason that paclitaxel is a very effective anti-cancer drug. However,

it has been observed that after a period of treatment with paclitaxel, the cells start

acquiring resistance against the suppressing effect of the drug on microtubule dynamics.

It has been hypothesized that cell resistance is correlated with an over-expression of

a β-tubulin isotype, known as βIII. In the study by Kamath et al. [38], the authors

tested this hypothesis experimentally. The control condition was that of normal cells

having βI-tubulin as the predominant β-isotype, comprising approximately 70% of the

total β-tubulin pool. Paclitaxel effectively suppressed microtubule dynamics in the

controls cells. However, by over-expressing βIII, paclitaxel had a very reduced effect

on microtubule dynamics. The study concluded that, indeed, βIII is associated with

acquired cell resistance to paclitaxel. Some of the videos used in this thesis comes

from this β-III study [38].

It is worth noting here that it is very difficult to examine individual microtubule be-

havior during mitosis due to the bundling of microtubules that participate in the process.

Hence, as an approximation, biologists often study microtubules during the interphase

part of the cell cycle. The assumption is that microtubule behavior, under different test

conditions, will be very close to the case of dividing cells.
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2.3 Sample Preparation

Live cell fluorescence microscopy using GFP-tubulin is the technique used to image

microtubules studied in this thesis. However other possibilities such as speckle, con-

focal, and differential interference contrast microscopy do exist and will be discussed

later. We will briefly highlight the main components in microtubule sample preparation

task:

1. Type of the study: in vivo and in vitro:

• in vivo: In “in vivo” studies, the microtubules are imaged in their cell environ-

ment, thus a labelling technique is required to visualize only the microtubules and

not other cell components. The main advantage of in vivo studies is that micro-

tubules are analyzed in their native environment, thus one can draw conclusions

corresponding to the situation in living cells. On the other hand, in vivo studies

of microtubules are affected by all the regulatory effects present in a living cell,

thus making it very hard to control all the possible variables in the experimental

paradigm.

• in vitro: In “in vitro” studies, the tubulin -from which microtubules are assembled-

is purified away from other cellular components and thus microtubules are im-

aged separately. Usually techniques such as differential interference contrast

(DIC) are used to image dynamics, which has a relatively low signal-to-noise

ratio. The main advantage of in vitro studies is that microtubules are analyzed
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separately from all other cellular factors, allowing more precise cause-and-effect

relationships to be tested directly. On the other hand, the main disadvantage of

in vitro studies is that they may or may not accurately mimick the real cellular

situation.

Thus, one important strategy in biological research on microtubules is to study a test

subject effect on microtubule dynamics first in vitro for making direct inferences. If an

interesting observation is found, then in vivo study of the same test subject is carried

out to assess the in vitro observation in live cells.

2. Experimental sample: in vivo studies can be performed in cultured cells, tis-

sue samples or whole animals. Examples of cultured cells include breast cancer cells

(MCF7) [51], cervical cancer cells (Hela) [52], and the rat adrenal cell line (PC12) [94].

3. Test article/subject: This is the main subject of a microtubule dynamics study.

An example is studying the capability of a certain drug such as Epothilone B, in a

concentration dependent manner, to block cells from progressing into mitosis, thus

preventing cell division [65].

4. Route of administration: This is the technique by which the test subject is admin-

istrated to the experimental sample. For introduction into cells, the main techniques of

administration are adding membrane permeable agents to bathing media, microinjec-

tion, and transfection (foreign DNA).

5. Microtubule labelling: This is the technique used to visualize the microtubules

from the other cell components, so that only the microtubules are imaged. Techniques
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of labelling include coupling of Green Fluorescent Protein (GFP) or Rhodamine to

tubulin. The basic idea to genetically or chemically modify the tubulin protein so that it

is fluorescent and thus emits light that can be imaged when excited with a light source

of the appropriate wavelength.

2.4 Imaging Microtubule Dynamics

Though the main technique used in imaging the microtubule videos used in this thesis

is fluorescence imaging, a few other alternative imaging techniques are discussed in the

following.

2.4.1 Fluorescence Microscopy

In fluorescence microscopy, a sample of cells containing microtubules is labelled with

a fluorescent protein such as GFP-tubulin. When a light beam hits the sample, the

fluorescent molecules absorb photons. Their electrons are excited to higher orbits, re-

maining there for a short while, then returning back to the low level orbit and releasing

a photon. The emitted photons from the sample are collected by a charge coupled

device (CCD) array, and an image is formed (See, for example, Fig. 1.1). Hence flu-

orochrome materials act as energy transducers having both an absorption and an emis-

sion spectrum. One problem that can arise in live cell fluorescence imaging is referred

to as photo-bleaching. Photo-bleaching refers to the fact that as the sample is hit by

light and emits back photons, it loses the capability of fluorescing over time, and thus
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becomes unimagable. Researchers attempt to compensate for photo-bleaching by mini-

mizing and varying the amount of incident light on the sample, which poses significant

challenges to any automated image processing technique to handle abrupt illumination

changes.

2.4.2 Confocal Microscopy

The spatial resolution of regular fluorescence microscopy is limited by the optical ef-

ficiency in concentrating the light hitting the sample. In confocal fluorescence mi-

croscopy, a more advanced optical system which uses a more focussed laser beam hits

point locations on the sample, thus providing higher spatial resolution and reducing

out-of-focus illumination (See an example of microtubules in Fig. 2.2.) The drawback

of this point scanning microscopy is that a raster scanning of the sample is required to

image the full sample, thus limiting its application for high-speed capture of living cells

used in dynamic studies.

2.4.3 Fluorescence Speckle Microscopy

Fluorescence Speckle Microscopy (FSM) is a recent technique that was developed to

analyze the assembley/disassembly of macromolecular structures, such as actin fila-

ments, and microtubules [27]. Random speckle appearance is obtained by generating

very low densities of fluorescent labelling of the molecular structures. The main ad-

vantages of speckle microscopy are its ability to detect growth and shortening events
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Figure 2.2: An example confocal image of microtubules (courtesy of [4]).

as well as translocations/sliding events, by only labelling sparse and randomly spaced

points along the structure, and being able to track the speckles over time. Coupled with

automated methods for tracking the speckles, this microscopy technique has proven to

be very efficient in tracking actin network movement [40]. FSM also enhances the con-

trast of samples by reducing out-of-focus fluorescence. Initially, FSM was designed

for conventional fluorescence microscopy and then adapted for confocal microscopy

for better speckle contrast. However, one limitation of the FSM is that one can not

track the microtubule tips which is extremely important in many microtubule dynamic

studies.
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2.4.4 Nomarski Differential Interference Contrast Microscopy (DIC)

The key to differential interference contrast microscopy is to use two polarizing filters

and two prisms to actually obtain two images of the sample, offset by a small fraction

of the wavelength of light. Having two images enables light comparison between them,

which makes the Nomarski DIC capable of generating the highest resolution of a light

microscope (See Fig. 2.4 for an example image). However, the main disadvantage of

DIC is its low signal-to-noise image ratio, thus it is mostly used for in vitro studies

where we image purified microtubules without any other interfering cell components.

DIC is not suitable for in vivo studies, as the resulting low signal-to-noise ratio images

would be very cluttered and it would not be possible to resolve individual microtubules.

2.4.5 Atomic Force Microscopy (AFM)

The previously discussed light microscopy techniques cannot visualize the individual

molecular subunits of microtubules. However, visualization at this level can address

many critical issues. A possible solution is to use a higher resolution imaging technique

called atomic force microscopy (AFM), which can generate such as the ones in Fig.

2.3. In AFM, a very small tip is used to physically scan the surface of the microtubule.

The force exerted on the tip is translated into a height measurement of the sample.

Unfortunately, the time currently required to acquire one AFM image does not allow

high speed imaging.
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Figure 2.3: An example high-resolution AFM image of a number of micro-

tubules (courtesy of [4]).
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Figure 2.4: An example Nomarski Differential Interference contrast Microscopy

image of microtubules (courtesy of [4]).

2.5 Analyzing Microtubule Dynamics

A typical microtubule dynamic study would generate several stacks that are then ana-

lyzed to quantify the growth and shortening events. The analysis step is mostly done

manually, by tracking individual microtubule tips, one at a time, over the entire video.

The length of a microtubule at any given frame is approximated by the Euclidean dis-

tance between the tracked tip and a reference point. From the length at each frame,

a life history plot is generated. The life history plot is manually parsed into growth,

shortening and attenuation events as shown in Fig. 2.5. A GrowthEvent refers to

periods of time where the microtubule is increasing in length. A ShorteningEvent

refers for periods of decrease in length. Attenuation refers to periods of neither signif-

icant growth nor shortening. Rescue is a transition from shortening to attenuation or

growth. Catastrophe is transition from growth or attenuation to shortening. Table 2.1
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summarizes some of the important parameters in a microtubule study.

Microtubule length

time

GrowthEvent

Attenuation

ShorteningEvent

Rescue
Catastrophe

Microtubule length

time

GrowthEvent

Attenuation

ShorteningEvent

Rescue

Microtubule length

time

GrowthEvent

Attenuation

ShorteningEvent

Rescue
Catastrophe

Figure 2.5: An example life history plot of a microtubule showing different dy-

namic events.

The mean and standard deviation (μ, σ) of all the shortening events belonging to one

experimental condition are defined as:

μShorteningRate =
1

NSE

NSE∑
i=1

ShorteningEventRate(i) (2.1)

σShorteningRate =
1

NSE

NSE∑
i=1

(ShorteningEventRate(i) − μShorteningRate)
2 (2.2)

where ShorteningEventRate = Total length decreased in Δt
Δt

The mean and standard deviation (μ, σ) of all the growth events belonging to one ex-

perimental condition are defined as:

μGrowthRate =
1

NGE

NGE∑
i=1

GrowthEventRate(i) (2.3)

σGrowthRate =
1

NGE

NGE∑
i=1

(GrowthEventRate(i) − μGrowthRate)
2 (2.4)
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Parameter Meaning

NMT Total number of MTs tracked

GrowthEvent Time interval [t, t + Δt] where

a MT is growing in length.

ShorteningEvent Time interval [t, t + Δt] where

a MT is decreasing in length.

GrowthEventRate (of a GrowthEvent) Total Length grown in Δt
Δt

ShorteningEventRate (of a ShorteningEvent) Total length decreased in Δt
Δt

T Total MT track duration.

LI (of a MT) Total Length increase in T .

LD (of a MT) Total Length decrease in T .

MTDynamicity LI+LT

T
for a MT.

NGE Number of GrowthEvent

for all MTs.

NSE Number of ShorteningEvent

for all MTs.

ShorteningRate Shortening rate for all the MTs.

GrowthRate Growth rate for all the MTs.

Dynamicity Dynamicity for all the MTs.

Table 2.1: Microtubule (MT) dynamic parameters of importance. The parame-

ters are computed for a given experimental condition.
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where GrowthEventRate = Total Length grown in Δt
Δt

The mean and standard deviation (μ, σ) of the dynamicity of all the microtubules be-

longing to one experimental condition are defined as:

μDynamicity =
1

NMT

NMT∑
j=1

MTDynamicity(j) (2.5)

σDynamicity =
1

NMT

NMT∑
j=1

(MTDynamicity(j) − μDynamicity)
2 (2.6)

MTDynamicity = Total MT length increased in T + Total MT length decreased in T
T

for a MT.

In this chapter, a detailed overview on how microtubule studies are currently carried

on in biology laboratories was presented. First, a detailed discussion was given on the

structure and function within cells. The main steps prior to having a microtubule video

are: a) sample preparation and b) microscopy imaging of dynamics. Example research

work on microtubule dynamics were discussed to illustrate the current questions of im-

portance biologists try to answer. Finally, the main parameters describing microtubule

dynamics used in microtubule studies were explained.
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Chapter 3

Automated Detection and Tracking of

Microtubules: Challenges

An essential step in most microtubule dynamic studies is the localization and tracking

of microtubules, which is generally performed manually. The tracking data is then used

to derive several dynamic parameters as discussed in chapter 2. The most important pre-

processing step is that of extracting suitable features for microtubule tracking, in this

case we use microtubule tips. The main contributions in this chapter are: i) automated

extraction of the cell region corresponding to microtubules of interest for tracking, and

b) enhancement and microtubule tip detection.

The rest of the chapter is as follows. Section 3.1 presents a detailed overview on the

literature of automated microtubule detection and tracking, as well as relevant work in

active contour and curvilinear structure tracking. Section 3.2 gives details on our mi-
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crotubule feature extraction. This includes microtubule layer extraction, enhancement

and tip detection. Finally, a summary of the chapter is given in Section 3.3.

3.1 Related Work

The manual tracking of microtubules is a time consuming, and laborious task; it can

involve unintentional bias. The number of microtubules being tracked per cell is small,

typically about 5 microtubules per video. Hence the complete dynamic behavior of mi-

crotubules in a cell is not fully captured. Generally, computation of microtubule length

is based on the Euclidean distance between a fixed reference point and the tracked tip.

The Euclidean distance can lead to inaccurate length estimates when the microtubule

structure is not linear, as shown in Fig. 3.1. Additionally, since the body of the micro-

tubule is not captured, no inferences can be made about shape changes under different

experimental conditions.

Beside automating the manually performed tasks, improved detection and track-

ing would be expected to facilitate new analyses that are not currently feasible with

the existing manually tracked results. For example, accurate localization of the en-

tire microtubule enables shape computations and studying neighboring effects of the

microtubules in their growth and shortening.
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Euclidean length

More accurate length

Reference point

Euclidean length

More accurate length
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Figure 3.1: Right: an image showing the two type of length computations: i)

current length computation using a Euclidean distance between the microtubule

tip and a reference point, and ii) the more accurate distance along the microtubule

body (the image brightness is increased for clarity). The original image is shown

on the left.

3.1.1 General Tracking Approaches

Automated tracking of objects has a rich history in computer vision research [29], [34],

[36], [37], [68], [93], [105]. Tracking algorithms can be broadly classified as model-

based and non-model based techniques. Model-based tracking assume a model of the

tracked object (either 2D or 3D) and formulate the problem of tracking as one in which

the model parameters are estimated for each frame. An area where extensive use of

object models is human tracking [93], [29]. On the other hand, non-model based tech-

niques are based on the idea of matching regions from frame to frame using visual

features such as color, texture and motion. Examples include [37], where the authors

merge regions from two adjacent frames using motion and spatial similarity, starting

with over segmented frames. In [105], authors use the concept of dynamic motion

layers, which produces several independent motion layers in the sequence. Layer pa-

rameters and layer membership are estimated simultaneously using a generalized EM
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algorithm. In [68], multiple cues such as motion and color, are used in segmenting the

video frames. Class labels are computed for video pixels using a maximum likelihood

(ML) approach, and a set of weights for the ML function are adjusted using a confi-

dence measure on the extracted optical flow. In [34], tracking uses ideas from model-

based and non-model-based approaches. Edge features are used in tracking along with

a pre-defined object model.

3.1.2 Active Contour Tracking

Active contours are deformable curves that deform in the image plane according to

image features and internal smoothness constraints. In general, active contours are of

two types: parametric active contours and geometric active contours. Parametric active

contours or snakes were developed by Kass et al. [67]. Parametric active contours

define a curve on the image plane using an explicit parametric contour representation

that deforms under external and internal forces. Denoting the curve as C(s) where

s ε [0, 1] is the curve parameter as shown in Fig. 3.2. Note that in the case of a closed

curve C(s), we have C(0) = C(1).

In the active contour formulation, C(s) is allowed to deform under a balance of

forces to minimize the following energy functional:

E(C(s)) =

1∫
0

1

2

(
α |C ′(s)|2 + β |C ′′(s)|2

)
+ Eext (C(s)) ds (3.1)

where 1
2

(
α |C ′(s)|2 + β |C ′′(s)|2) is the internal snake energy composed of a balanced
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C(0)

C(1)

C(s)

N

N N

C(0)

C(1)

C(s)

NN

NN NN

Figure 3.2: A curve C(s) expressed in parametric form with
−→
N being the out-

ward curve normal at any given point. This curve is used as an active contour

deforming under external and internal forces.

weight of tension and rigidity of the contour. The tension and rigidity of the contour

are expressed by C ′(s) and C ′′(s), the first and second order derivative of the contour,

respectively. Both derivatives are computed with respect to the curve parameter s.

The external energy Eext(C(s)) represent image features that we want the contour to

snap on such as image edges. The deformation of an initial snake is carried out using

principles from calculus of variations and gradient descent minimization as in [67],

or using dynamic programming as in [9]. Snakes can be open or closed curves and the

parametric representation of the curve can be directly corresponding to the snake points

[112], or in a form of B-spline coefficients of the contour segments [104]. In the area of

object detection and image segmentation there has been numerous proposed parameter

active contour models each of which defines an energy functional that deforms a curve

on the image so as to converge finally on the features of interest of the object (such
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as image edges). Example parametric active contour approaches include the original

snakes work [67]. In [25], a balloon force is added to the traditional image-based

external forces (−∇Eext(C(s)), so that the resulting total external force F acting on

the contour is of the form:

F = λ
−→
N −∇Eext (3.2)

where ∇Eext is the gradient of the external force and
−→
N is the outward curve normal

at any given point on the curve (See Fig. 3.2). Depending on the sign of λ, the balloon

force can expand (for positive values) or shrink the curve C(s) in the normal direction

with a magnitude |λ|. The main motivation behind the balloon force is to allow evolu-

tion in smooth image areas and to avoid the requirement that the initial curve be very

close to the desired image boundaries as in the original snake formulation.

A more robust snake model was developed based on a specially designed vector

force (gradient vector flow) in [112]. It was shown that the vector field has a larger

capture field to object boundaries compared to simple gradient and that it is capable

of reaching concave regions. The disadvantage of parametric active contours is that

change of topology of the contours are not handled naturally, special care need to be

carried out to check for splitting and merging of curves such as in [28].

Geometric active contours represent the contour in an implicit form as a cross

section of a high dimensional embedding surface as in [88]. We follow the notation

from [70] in describing the basic idea behind the level set method. Let us define the
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horizontal cross section of a function U(x, y) by the set of points for which U(x, y) = a,

where a is any constant. For a 3-D function U(x, y), the horizontal cross section is the

intersection of a horizontal plane at height a and U(x, y), as shown in Fig. 3.3.

C(s )

U(x,y )

C(s )

U(x,y )

Figure 3.3: Illustration of the concept of representing a curve C(s) implicitly as

the level set of function U(x, y).

The set of points for which U(x, y) = a is termed the ath level set of U . Without

loss of generality, we will use for this discussion the zero level set of U . The main

idea behind the level set method is to represent the active contour in an implicit form as

being the zero level set of a function U as shown in Fig. 3.3. Mathematically, the curve

C(s) is defined as:

C(s) = {(x, y)|U(x, y) = 0} (3.3)

The curve deformation under external and internal forces is now implemented on
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the embedding surface U , rather than the curve C(s). This Eulerian formulation -

as opposed to the explicit Lagrangian formulation- has the advantage that topological

changes of the deforming curve are naturally handled, with the capability of handling

singularities such as corners. The zero level set of a deforming surface U can evolve

from being a simple closed curve to multiple simple curves as shown in Fig. 3.4.

C(s,t1)

U(x,y,t1)

C(s,t1)

U(x,y,t1)

(a)

C(s,t2)

U(x,y,t2)

C(s,t2)

U(x,y,t2)

(b)

Figure 3.4: Two time instants, t1 and t2, in the evolution of a curve. The curve is

represented implicitly as the level set of a function U . Note that the curve started

as one simply connected curve at time t1 and later split into two simple curves.

This illustrates the power of the level set method in handling topological changes

in the active contour.

However existing level set methods for curve evolution are hard to apply to open

curves and require intersection of level set functions which can be more computation-

ally expensive than using parametric active contours [89]. Example work in the liter-

ature of object segmentation for geometric active include the geodesic active contour
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model [18]. A geodesic is simply the minimum path on a domain between two points.

In the case of a uniformly weighted flat domain, the geodesic between two points is

a line. In [18], the active contour is deformed until it achieves the minimum of the

functional:

1∫
0

g (C(s)) ds (3.4)

Thus, the weighted contour length (g(C(s))) is minimized. The weight used in [18] is

an inversely proportional function of the image gradient driving the contour to settle on

region boundaries:

g =
1

1 +
∣∣∣∇Î

∣∣∣p (3.5)

for p = 1, 2 and Î is a smoothed version of the image I .

Another example of a geometric active contour is the regularized Laplacian zero

crossing detector proposed in [69], where the authors interpret classic edge detectors

such as Marr-Hildretth and Canny edge detectors in an energy minimization framework.

In the literature, fast implementation methods were introduced for the level set approach

of curve evolution such as the narrow band [5], fast marching methods [99], and the

Hermes algorithm [90].

For the case of microtubule images, we are interested in tracking open ended struc-

tures that do not change their topology. Therefore, we choose to use a parametric active

contour for capturing the microtubule body.
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Active Contour Tracking Approaches

We review the major active contour approaches used for video object tracking. We will

classify these approaches based on two features: a) handling large inter-frame motion

by motion estimation and b) capability of tracking multiple objects.

It is worth making a note here that level sets approaches can inherently detect mul-

tiple objects as curve splitting and merging is natural. However, we do not consider this

case to be truly dealing with tracking multiple objects because individual object identi-

ties are not preserved when contours evolve. For example consider the case of tracking

two objects when one occludes the other partially in time. In such a case a standard

level set approach will create one single curve covering both objects losing boundaries

between them.

Based on the above two features of active contour tracking approaches, we have

four different classes of techniques: i) techniques that do not use motion estimation and

track a single object, ii) techniques that do use motion estimation and track a single

object, iii) techniques that do not use motion estimation but track multiple objects, and

finally vi) techniques that do use motion estimation and track multiple objects.

The simplest case is when a single object/region is tracked with no motion estima-

tion employed as in [55], [90], [104]. In [55], an active contour model based on min-

imizing a geodesic path using graph searching is proposed to extract boundaries. The

initial contour in a new frame is taken from its location in the previous frame. Topo-

logical changes - such as multi-object merging need manual intervention. In [104], a
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B-spline model is combined with a muti-scale version of the gradient vector flow ap-

proach of [112] to delineate boundaries of single objects. Simple frame differencing

is used to find contours in new video frames without any explicit motion prediction.

In [90], a variational approach is used to detect and track moving objects in image

sequences. A geodesic active contour model is employed, consisting of two main com-

ponents: a) a motion detection, and b) tracking modules. The motion detection term

is devised to attract the contour towards moving regions, while the tracking term is de-

signed to drive the contour towards the image edges. As stated in [90], the technique

cannot handle large motion as it does not include a motion prediction step between

frames. Furthermore, the detection of multiple objects is rather a natural consequence

of using level sets without explicit handling of object to object interactions.

The second class of video tracking techniques based on active contours uses motion

estimation techniques for tracking a single region composed of one or more objects.

The use of motion estimation from frame to frame can be carried separate of the energy

minimization process to relocate the contour near the region boundaries in the present

frame such as in [19], [42], [76]. The other approaches use motion prediction within

the energy functional as in [16] which can track multiple occluding objects. However,

when occlusion occurs between two objects, the technique in [16] tracks both objects

using a single contour. Therefore, the individual object identities are lost.

The third category of active contour video tracking targets multiple objects but does

not use motion estimation [85], [120]. In these techniques, the assumption is that the
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video frame rate is high enough yielding small displacements betweens frames. In

[120], a repulsive interaction between neighboring object contours is introduced. The

conventional edge map based on image gradients is replaced by a new edge map that

has a repulsive effect between different objects’ contours. The contour location in a

new frame is simply taken from the previous frame. In [85], an interaction term is

introduced in the energy functional that discourages contours of different regions to

overlap. Although there is a tracking energy functional different from the one used for

the first frame, yet the individual terms assume that the contours in consecutive frames

will be close enough because of small displacements and high frame rate.

The last class of video tracking active contour uses motion estimation and addresses

the issue of tracking interacting objects. In [63], a system is developed to track labora-

tory animals using optical flow and refined with a special type of active contours called

active rays. Whenever the animals come into contact, a set of heuristic rules are applied

to resolve tracking conflicts and assign contours to each animal correctly. The system

uses optical flow for motion estimation between frames to cope with large motion.

Our proposed tracking approach falls into the last category since we are interested

in tracking multiple interacting microtubules exhibiting large motion between frames.

3.1.3 Detection and Tracking of Curvilinear Structures

Curvilinear structures detection and tracking represent important computer vision prob-

lems for applications such as road detection, mammographic image analysis, fiber iden-
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tification, fingerprint image analysis and microtubule detection and tracking. Many

techniques have been proposed in the literature to detect curvilinear structures such

as scale space approaches with Gaussian derivatives [75], the anisotropic Gauss filter-

ing [48], the fusion of two local line detectors followed by a global Markov random

field (MRF) [108], using differential geometric properties of images [101] and using

active contour approaches [96]. The problem of correspondence of curvilinear struc-

tures between sets of images, has also been studied. In the majority of approaches, lines

are first detected and then line properties such as orientation, position, width and center

lines are used for the matching process [21], [66], [81].

In [21], orientation of lines and position of endpoints are used for matching lines in

an image sequence and complemented with a relaxation labelling and temporal group-

ing processes. In [73], line intensities, diameters and center lines are used in the task

of 3D reconstruction. In [66], the authors solve for transformation that map set of lines

in an image to another using center points, line lengths and unit vectors along the lines.

In [81], the authors use line orientation, width and curvature to match sets of lines in

mammograms images taken over a period of time. To track changes in live neurons

(morphometry), different models for neuron growth and shrinking are used to label

frame-level changes within a Bayesian framework in [7].

In most of these techniques, a threshold is used to binarize the line detector re-

sponse prior to matching between the images. In the case of noisy and non-uniformly

illuminated video sequences, it is very likely that the required threshold will vary from
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frame to frame, thus causing a possible loss of the tracked curvilinear structure. Instead

of tracking using the binarized response, we propose to use an active contour frame-

work that uses the continuous line detector response to detect and track the curvilinear

structure of microtubules. This approach is capable of handling low-signal to noise

conditions and non uniform illumination issues in microtubule videos.

3.1.4 Review of Automated Microtubule Detection and Tracking

Automated Microtubule Detection Techniques

Recently, automated microtubule detection has been addressed in [39], [54], [59]–[61].

In the majority of these techniques, a user input is required to mark the ends of the

microtubule of interest. An enhancement procedure extracts the microtubule backbone

between the two ends. Hence, these techniques were mostly semi-automated in nature.

In [39], The proposed technique consists of two main components. First, a tube en-

hancement filter is used, which defines tube confidence measurement for each voxel.

Then, the user manually specifies two voxels, which mark the starting and ending point

of the microtubule axis. In this subvolume, the method randomly selects some points,

which become points of graph. After that, a graph searching algorithm is applied to

these points, and the shortest path based on a specific distance metric corresponds to

the central axis of the microtubule. A similar approach is used in [59], the authors pro-

pose a model-based 3D image enhancement approach by combining transform domain

technique and spatial domain techniques in three consecutive steps. The enhancement
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starts with an anisotropic invariant wavelet transform to effectively enhance the elon-

gated features, followed by a 3D shape filter via eigen analysis to capture the local

geometric properties of the tubular structure. The enhancement ends with a coherence

enhancing diffusion to complete the interruptions along the microtubules.

In [60], the authors propose to automate the microtubule segmentation by extending

the active shape model (ASM) in two aspects. First, they develop a higher order bound-

ary model obtained by 3-D local surface estimation that characterizes the microtubule

boundary better than the gray level appearance model in the 2-D microtubule cross

section. Then they incorporate this model into a weight matrix of the fitting error mea-

surement to increase the influence of salient features. Second, they integrate the ASM

with Kalman filtering to utilize the shape information along the longitudinal direction

of the microtubules and reduce the effects of noise and clutter. In [61], the authors pro-

pose an automated approach to extract the microtubule plus-end with a coarse to fine

scale scheme consisting of volume enhancement and plus-end segmentation. To make

the segmentation robust against confusing image features, they have fully incorporated

the prior knowledge of microtubules and plus-ends into a model-based framework. The

automated approach also segments more fine structures that could be overlooked by hu-

man operators. In [54], the microtubles are extracted in terms of consecutive segments

by solving Hamilton-Jacobi equations. The algorithm extracts the microtubule starting

from its tip. Furthermore, a limited 3D reconstruction is performed.
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Automated Microtubule Tracking Techniques

In the literature few papers have addressed the automated tracking of microtubules [26],

[41], [53]. In [53], the outer tips of microtubules are tracked using an extension of the

work in [54]. Streamlines minimizing a cost function are used to find microtubules

based on manually entered tips on an initial frame. To the best of our knowledge,

the only fully automated technique was presented in [41]. In [41], an initial point is

selected on a microtubule and iteratively gives a stack of points representing the micro-

tubule using tangent constraints. Once the microtubule is detected, it is tracked in time

while constraining the search space in a normal direction around microtubule points.

Visual tracking results are shown for two real sequences but without any quantitative

assessment of the tracking performance. Though the tracking algorithm is automated,

the authors report difficulties in handling microtubule intersections and do not present

quantitative tip tracking performance results for real sequences. The main point with

their approach is that microtubule tracking is performed using a local measure of con-

sistency that can lead to problems at intersection.

The work in [26] presents a framework for detecting and tracking diffraction images

of linear structures in differential interference contrast (DIC) microscopy. The method

requires the user to select few points on the microtubule dividing it into segments.

Tracking of the segments is performed using a sum of squared (brightness) differences

algorithm.

44



Chapter 3 Automated Detection and Tracking of Microtubules: Challenges

3.2 Feature Extraction for Microtubule Tracking

Microtubule analysis revolves around computing the microtubule length in every frame.

This has been done, manually, by tracking the tip and estimating the length as the Eu-

clidean distance to a fixed point. In order to automate the microtubule tracking for

length computation, we first extract a set of suitable features that are tracked over

frames. The features used for this purpose are the microtubule tips. The feature de-

tection task is composed of the following modules:

• Identifying microtubules of interest: We are usually interested in tracking micro-

tubules near the cell periphery, as most of the microtubule activity occurs at the

plus ends away from the cell center. Additionally, the reduced microtubule den-

sity at the periphery allows individual microtubules to be resolved. We propose a

clustering approach to extract a layer corresponding to microtubules of interest.

• Microtubule polymer mass detection: This is the first step towards automated

tracking. Given a video frame, we propose a filtering approach to extract a binary

mask showing microtubules.

• Automated microtubule tip detection: Given the binary mask of microtubules, we

propose a morphology-based technique to detect microtubule tips to be tracked

subsequently.
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3.2.1 Extracting Microtubule Layer by Temporal Clustering

A microtubule video of T frames can be considered as a spatiotemporal volume with

the first two dimensions as the spatial frame coordinates (x, y) and the third dimension

is the time t, as shown in Fig. 3.5. Let us denote the intensity value at each point in

this volume by f(x, y, t). At each pixel location (x, y) on the first frame, we construct

a vector a(x, y) of dimensionality T :

axy = [f (x, y, 1) , f (x, y, 2) , ..., f (x, y, T )] (3.6)

From axy, we construct a feature vector fxy by taking the Discrete Fourier Transform

(DFT):

fxy(u) =

∣∣∣∣∣
1

T

T∑
i=1

axy(i) e−
j2πiu

T

∣∣∣∣∣ , 1 ≤ u ≤ T (3.7)

where i is the ith and position in the vector axy. The resulting vector fxy is of di-

mensionality T and has as elements the magnitude of the DFT coefficients. The first

coefficient fxy(1) is the average intensity at location (x, y) over the number of frames T .

To make the representation intensity invariant, we discard fxy(1). Furthermore, since

there is a symmetry in the magnitude of FFT coefficients, we only take the first half of

coefficients. At the end, our feature vector is pxy (assuming T is odd):

pxy =

[
fxy (2) , fxy (3) , ..., fxy

(
T − 1

2

)]
, 1 ≤ x ≤ H, 1 ≤ y ≤ W (3.8)
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where W and H are the width and height of the video frame respectively. For every

(x, y) pixel, we now have a corresponding pxy value. The motivation behind using a

frequency-based representation of the volume is to use it to partition the microtubule

video into regions of different spatial activity patterns. We then cluster the different

FFT vectors pxy from all pixel positions using a K-means algorithm into V clusters

corresponding to regions of varying activity in the cell. Finally, we extract the clusters

corresponding to the region of highest activity, which we call the microtubule layer. An

example of the extraction of the microtubule layer is shown in Fig. 3.6.

x

y

t

x

y

t

Figure 3.5: The microtubule video represented as a volume.
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(a) (b)

(c)

Figure 3.6: Extracting the microtubule layer through temporal clustering. (a)

One of the image frames from the video, (b) K-means clustering into 5 clusters

including one for the background, and (c) the region of the frame corresponding

to the microtubule layer.
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3.2.2 Ridge-based Detection of Microtubules

After extracting the microtubule layer, a filtering approach is used to detect the mi-

crotubule tips in this layer. Our algorithm for tip detection starts by extracting a bi-

nary mask showing the locations of microtubule polymer. The basic assumption about

microtubules, that enables extracting a binary mask of microtubule locations, is that

microtubules look like black curvilinear structures on a light background in an ideal

scenario. A second derivative of Gaussian kernel matched to image locations at dif-

ferent orientations should reveal this tubular structure while eliminating background

noise. Let the intensity function in the window of interest W be denoted as IW , the

output after filtering the window is then:

If
W (x, y) = max

θ
(IW (x, y) ∗ G′′

σ,θ(x, y)) (3.9)

where G′′
σ,θ(x, y) is the second derivative of the Gaussian kernel with scale σ. The sec-

ond derivative is taken along an orientation θ. σ is chosen experimentally based on

the microtubule width. Gaussian second derivative kernels for four different orienta-

tions are shown in Fig. 3.7. In order to generate a binary image of the microtubule

mass while suppressing background noise, we use unsharp masking [50]. We use two

thresholds T1 and T2:

T1 = μIf
W

, T2 = μIf
W

+ σIf
W

and
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where μIf
W

and σIf
W

are respectively the mean and the standard deviation of the filtered

window If
W . We compute the binary images B1 and B2:

B1 = sgn(max(If
W − T1, 0))

and

B2 = sgn(max(If
W − T2, 0))

where sgn is the sign function. Finally, the binary microtubule mask B is obtained:

B = sgn(B1B2)

This way we essentially preserve the details of thresholding at the true microtubule

regions, while suppressing noise on the background. An example of finding the maxi-

mum of a second derivative of Gaussian convolved with the image at all pixel locations,

with σ = 2 and eight different orientations, is shown in Fig. 3.8, Fig. 3.9 and Fig. 3.10.

3.2.3 Detecting Microtubule Tips

The binary microtubule mask computed based on second derivative of Gaussian filter-

ing is thinned to generate one pixel width lines. A test is performed at every white pixel
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(a) (b)

(c) (d)

Figure 3.7: Gaussian second derivative kernels for (a) θ = 0◦, (b) θ = 45◦, (c) θ

= 90◦ and (d) θ = 135◦.
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(a)

(b)

Figure 3.8: (a) A microtubule video frame and (b) the second derivative of Gaus-

sian filter output.
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(a)

(b)

Figure 3.9: (a) Binarization of the filter output shown in Fig. 3.8 and (b) thinning

of the binarization used as input to the tip detector.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.10: Left column: window IW in a video frame, middle column: filter

output If
W and right column: binarization.
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location to check if the pixel is a line ending. Mimicking the manual method to select

microtubule tips that are free of too much clutter, we filter out tips that are in locations

where the ratio of microtubule polymer to non-polymer masses is less than a threshold

- we take it 0.3 experimentally. Examples of microtubule tip detection for two video

sequences are shown in Fig. 3.11 and Fig. 3.12.

Quantitative Evaluation of Tip Detection

We are using six microtubule videos as the basis of the tip detection performance. In

each video, we manually marked the microtubule tip locations in the 6th frame. We ran

our tip detector on the 6th frame of each video sequence. Consider the case that we

detect N1 tips, while there are N2 manually selected tips. To evaluate the performance

of the tip detector, we use a bipartite graph matching, with the two sets of tips N1 and

N2 being the two parts of the graph, to compute the precision recall of the tip detector.

Consider the case that out of the N1 detected tips, there are N ′
1 true tips. The precision

P and recall R values of the tip detector in this case are as follows:

P =
N ′

1

N1

× 100%

R =
N ′

1

N2

× 100% (3.10)

We have a parameter in the tip detector that controls the number of detected tips. Con-

sider that we run the tip detector on a frame and obtain N frames. For each tip, out of

the N tips, we compute a test value Tperc in a window Win of size 61 × 61 around the
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(a)

(b)

Figure 3.11: Examples of microtubule tip detection in two consecutive frames of

a video sequence.
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(a)

(b)

Figure 3.12: Examples of microtubule tip detection in two consecutive frames of

a video sequence.
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tip. The test value in the window is the ratio of polymer mass to the total size of the

window. Computationally, this test value is the percentage of white pixels in the binary

microtubule detector image within the window Win. Consider a threshold value th1, if

Tperc within the window around a tip is greater than th1, then we reject the tip, otherwise

we consider it as a tip. The main motivation behind this filtering is that humans usually

select tips in the peripheral region of the cell, where the test value Tperc is likely to be

low. By varying the threshold th1, we obtain a variable number of tips in the considered

frame. Thus, with the manually marked tips, we can now compute a precision-recall

curve for the tips within the frame by varying the threshold th1. For each value of th1,

we have a unique precision-recall value for a given frame. We take the following values

for th1: 0.2, 0.4, 0.6, 0.8 and 1. To summarize the precision-recall value at each th1

value, we use the F-measure [95] with equal weighting of the precision recall values

defined as follows:

F =
2PR

P + R
(3.11)

Example precision recall curves and their corresponding F-measures for two frames in

two example microtubule videos are shown in Fig. 3.13 and Fig. 3.14.

By computing the F-measure over the 6 frames corresponding to frame number six

in each of the microtubule video sequences, we found that the optimum value of Tperc

is 0.2. With the value of 0.2, we show in Fig. 3.15 the F-measure of all the videos.
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Figure 3.13: (a) Precision-recall of tip detection in the sixth frame of a video

sequence and (b) its corresponding F-measure for equal weighting of precision

and recall.
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Figure 3.14: (a) Precision-recall of tip detection in the sixth frame of a video

sequence and (b) its corresponding F-measure for equal weighting of precision

and recall.
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Figure 3.15: The F-measure of the tip detector in the sixth frame of the 20 video

sequences.
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3.3 Summary

We have discussed in this chapter the problem of automated detection and tracking of

microtubules. First, we presented a detailed review of the state-of-the-art microtubule

detection and tracking in the literature. We also discussed relevant related work on

tracking curvilinear structures, active contour tracking approaches as well as general

tracking approaches. Second, we introduced the preprocessing approach that we are

developping in this thesis for tracking microtubules. Specifically, we looked into the

automated extraction of microtubule tips, used as features for tracking in Chapter 4.

Automated extraction of microtubule tips is solved using three modules: a) microtubule

layer extraction, to extract the microtubules of interest for tracking, b) filtering and

binarization of microtubule polymer mass and c) detecting microtubule tips from the

binarization, using a morphological approach. We have shown example of visual and

quantitative experimental results for tip detection. With the microtubule tips detected

in every frame of the video, we now have the features used for tracking in the next

chapter.
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Chapter 4

Spatio-temporal Tracking of

Microtubules in Live Cell Imaging

Automated tracking of microtubules could provide critical insights into understanding

the molecular basis of microtubule dynamics. In Chapter 3, we have proposed a tech-

nique to extract microtubule tips to be used as features for tracking. Based on these

features, we introduce in this chapter a novel automated technique for microtubule tip

tracking. The proposed tracking algorithm is based on a spatio-temporal tip match-

ing over video frames to form tracks. We formulate the problem of tip matching over

frames in a graph-based context. Hence, tip matching becomes a maximum matching

on the graph, for which there are efficient numerical implementations. Graph vertices

are the microtubule tips and edge weights correspond to similarity between tips. After

computing the best matching tips, we proceed to form the microtubule body using a
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Fast Marching technique [99]. Microtubule body deformations are addressed using an

active contour approach. The proposed spatiotemporal tracking algorithm addresses

the following challenges in tracking microtubules:

• Microtubules appear as tubular structures in the image frames. The shape of

microtubules vary within the same cell widely. An accurate estimation of the

length of the microtubule should take into account the curvilinear structure. The

currently widely used manual tip tracking method and statistical methods ignore

this effect.

• Microtubules undergo large changes in length from frame to frame because of

growth or shortening at either microtubule ends. The large change in length, to-

gether with frequent occlusions, pose significant problems to any tracking method.

• The images of microtubules have low signal-to-noise ratio and exhibit nonuni-

form illumination both spatially and temporally.

The rest of the chapter is as follows. Section 4.1 gives an overview of the proposed

spatio-temporal microtubule tracking technique. In Section 4.2, we give details on

solving the tip matching problem in a video. We discuss the formulation of the tip

tracking problem in a graph-based context, the similarity metric suggested as weights

on the constructed graph and the algorithm used to compute the maximum matching

over the graph. In Section 4.3, the algorithm for microtubule body formation from tips

and the proposed active contour for handling lateral motions are presented as well as
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visual and quantitative experimental results. Finally, a summary of the chapter is given

in Section 4.4.

4.1 Multiframe Tracking Approach

We model a microtubule in a video frame as an open curve C(s) where s ε [0, 1] is the

curve parameter (see fig. 4.1). Due to the highly dynamic nature of microtubules and

their frequent intersections, a spatiotemporal tracking algorithm based on deformable

contours is an effective strategy. We propose to use an active contour based on line

features to capture deformations of the microtubule in a given frame. The active contour

is an open curve in this case with one end fixed and the other - the tip- is free to move.

Tracking the microtubule in a frame is performed by finding the image location which

minimizes a functional E(C(s)) over the image plane:

E(C(s)) =

1∫
0

(Eint(C(s)) + Eext(C(s))) ds (4.1)

with: C(0) is the microtubule end, assumed fixed over frames, and C(1) is the micro-

tubule tip free to move.

The multiframe approach suggested here is based on the following modules:

• Tip detection: Given a microtubule video, we design a tip detector generating the

locations of microtubule tips in every frame. Note that the number of the detected

tips in every frame need not to be equal.
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(a) (b)

Figure 4.1: Microtubule model as an open curve with only one moving end – the

tip.

• Multiframe tip matching to generate tracks: Given the detected tips in every

frame, tips need to be matched between frames to form microtubule tracks. This

is formulated as a graph matching problem, by considering all tips from all the

frames simultaneously. In this way, this formulation is capable of tracking mul-

tiple interacting microtubules. The advantage of multiframe tip matching is that

it enforces continuity of tracks, is able to handle missing tips in some frames due

to noise, and is able to discard false positives.

• Extracting microtubule bodies: An active contour-based approach is proposed

to track the full body of the microtubule based on the tip locations in a given

microtubule track. Being able to track changes in the full body of the microtubule

instead of just the tip location enables a better estimate of the microtubule length.

Furthermore, shape changes can now be studied in microtubules which can not
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be performed based on tip tracking only.

The block diagram of the tracking technique is shown in Fig. 4.2. Tip position estima-

tion in any given frame has been discussed in Chapter 3 (Section 3.2.3), the spatiotem-

poral matching of tips is now detailed.

4.2 Spatiotemporal Tip Matching

Having generated a set of tips in every frame of the microtubule video, corresponding

tips are matched between frames to form microtubule tracks. The matching is con-

sidered from all the frames directly in a spatiotemporal manner. At the end of the tip

matching over all the frames, the longest tracks are selected for further processing, since

short tracks are likely to be due to noise. It is worth noting that the computed tracks

in this manner can start and end at any given frame of the video sequence, can have

arbitrary lengths, and can be skipping frames in the middle. Tip matching is formulated

as a graph matching problem.

4.2.1 Graph-based Formulation

Consider a microtubule video of length T frames. Let us denote Ni to be the number

of tips detected in frame i for 1 ≤ i ≤ T . Denote the tip detected in a frame as thi with

the subscript corresponding to the frame number and the superscript corresponding

to the tip number in frame fi, thus h has the range 1 ≤ h ≤ Ni. We construct a
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Set j = 1

Finish

Compute tips in all 
frames

Perform graph 
matching to extract 
the “best” N tracks

Extract MT body 
using Fast Marching 
in the first frame of 

track j

Use an active contour 
to adjust the body at 
the frames of track j

MT layer extraction

is j > N?

Set j = 1

Finish

Compute tips in all 
frames

Perform graph 
matching to extract 
the “best” N tracks

Extract MT body 
using Fast Marching 
in the first frame of 

track j

Use an active contour 
to adjust the body at 
the frames of track j

MT layer extraction

is j > N?

Figure 4.2: The block diagram of the proposed spatiotemporal tracking tech-

nique.
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graph G = (V,E) whose vertices V correspond to the detected tips in every frame

and the edges E represent similarity between vertices. The edge weights of the graph

represent the matching gain of corresponding two tips in different frames. In order to

allow microtubule tracks to skip some frames, edges are included between tips in non-

consecutive video frames. An example of a graph used for tracking microtubules is

shown in Fig. 4.3 with a possible solution of tip matching.

(a) (b)

Figure 4.3: (a) An example graph whose vertices are the tips detected in every

frame of video (here shown for a length 4 video) and (b) a possible maximal

matching solution. The attributes at each vertix are the frame number and the tip

number in this frame. Note that the tracks can be of different lengths, start and

end at arbitrary frames, and skip frames in between.

The main advantages of formulating the tip matching problem using a single graph

encoding all the tips from all the frames are:

• It can handle missing tips due to noisy conditions by allowing the final micro-
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tubule tracks to skip frames in between.

• It can potentially remove spurious tips found if the noise/loss in signal does not

occur repeatedly at nearby locations.

• It can handle tip occlusion, since the graph matching allows tips in non-consecutive

frames to be matched.

4.2.2 Similarity Metric

The main metric which defines the matching of tips for the video frame is the similarity

measure linking tips in different frames. Consider two tips thi and trj in two separate

frames fi and fj . For example, one can use:

Sim(thi , t
r
j) =

1

1 + d(thi , t
r
j)

(4.2)

where d(., .) is the Euclidean distance between the two tips. However this will have

problems in cases of tips of different microtubules coming close to each other. A bet-

ter alternative is to consider a distance constrained on the microtubule body, such as a

geodesic distance. The geodesic distance assumes the knowledge of whether the micro-

tubule is growing or shortening. Since, we do not have a-priori information on growth

or shortening of a microtubule, we consider both cases between two different frames as

in Fig. 4.4. Let us denote the geodesic distance computed with the assumption that the

microtubule is growing as the first geodesic distance dgrowing. Similarly, we denote the

geodesic distance in the case of shortening as the second geodesic distance dshortening.
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For the microtubule growth, we project the location of the tip thi on frame fi to the

same location on frame fj . We compute dgrowing(t
h
i , t

r
j) as shown on Fig. 4.4.a. For the

microtubule shortening case, we back-project the location of the tip on frame fj to the

same location on frame fi. We then compute the geodesic distance dshortening(t
h
i , t

r
j) as

shown on Fig. 4.4.b. Finally the similarity metric (edge weight on the graph G) used

between the two tips thi and trj is computed as follows:

Sim(thi , t
r
j) = e−min(dshortening,dgrowing), (4.3)

where the exponent is taken as the minimum of the two geodesic distances.

dgrowing (ti
h, tj

r)

tih tj
r

dgrowing (ti
h, tj

r)

tih tj
r

(a)

dshortening (ti
h, tjr)

ti
h

tj
r

dshortening (ti
h, tjr)

ti
h

tj
r

(b)

Figure 4.4: Illustration on how the similarity weight between vertices of the

graph is computed between tips in two different frames fi and fj (see text for

explanation). (a) Case of growing and (b) shortening.

4.2.3 Maximum Matching on the Graph

Given the graph G of microtubule tips as vertices and the edge weights as defined

in (4.3), we compute a maximum weight matching of the tips which correspond to
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microtubule tracks. From graph theory, we know that a vertex disjoint path cover C is

a covering of G where each vertex of G is in some path of C and each vertex belongs

to one path only [100]. The weight of a path cover is the sum of weights of edges on

the path cover. Given an initial graph G, the problem of finding the best microtubule

tracks corresponds to finding the maximum weight path cover of G with the weights

defined by the similarity in (4.3). Formally, a maximum weight path cover C(G) is a

path cover which satisfies:

C(G) = arg max
Ci

W (Ci) (4.4)

where W (Ci) =
∑

(u,v)εCi
Sim(u, v) and u, v are two vertices in G for which the

similarity is computed as in (4.3).

We proceed to compute the maximum weight path cover as suggested in [100].

Let us define a split graph Gsplit corresponding to G as a bipartite graph with partite

vertix sets V+ and V−. V+ and V− are copies of the vertices V . An edge euv between

two vertices u and v in G has the same weight as the edge eu+v− in Gsplit. The edges

of maximum matching of the bipartite split graph Gsplit correspond to the edges of

maximum path cover of G. The algorithm used to compute the maximum matching is

depicted in Alg. 1. The graph edge weight computation is detailed in Alg. 2 and Alg. 3.
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Algorithm 1 Tracks = ComputeMTtrackingTips(V id,T ,DistTh,MissedFrames)
Input: Filtered Microtubule video stack V id having T frames, Euclidean

distance threshold for tip similarity DistTh, maximum allowed number
of frames missed in a MT track MissedFrames

Output: Set of microtubule tip tracks Tracks

/*Detect tips in all the frames of Video V id
T ips is an array. Each element in Tips has
the frame and tip number as contents. */

Tips = DetectTips(Vid);

/*Construct graph G(V,E) with the vertices as Tips
and edges E as the similarities between the tips */

E = ComputeWeights(G,Vid,Tips,DistTh,MissedFrames);

/*Compute split graph Gsplit for G */

V+ = V ;

V− = V ;

for all edges Euv in G do

Esplit(u+, v−) = Euv;

end

Gsplit = (V+, V−, Esplit);

/*Do Bipartite Graph matching on Gsplit */

MatchedEdges = BipartiteMatching(Gsplit);

/*Stitch together the tips forming an MT track */
Tracks = StitchTips(MatchedEdges);
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Algorithm 2 EdgeWeights = ComputeWeights(G,Vid,Tips,DistTh,MissedFrames)
Input: Graph G, V id, Euclidean distance threshold for tip similarity

DistTh, maximum allowed number of frames missed in a MT track
MissedFrames

Output: EdgeWeights of graph G

for i ← 1 to |Tips| do

for j ← 1 to |Tips| do

/*frame(i) is the frame number for Tips(i) */
/*Check if the frames of the tips are within
the allowed frame difference and the Euclidean
distance between tips is ≤ DistTh */

if (0 < frame(j) − frame(i) ≤ MissedFrames &
EucDist(Tips(i), T ips(j)) ≤ DistTh) then

/*V id(i) is the ith frame in V id */
EdgeWeights(i,j)=ComputeSimilarity(Tips(i),Tips(j),Vid(i),Vid(j)));

else

EdgeWeights(i,j) = 0;

end
end

end

Algorithm 3 Similarity = ComputeSimilarity(Tip1, T ip2, F rame1, F rame2)
Input: Tip1, T ip2, F rame1, F rame2

Output: Similarity

/*Project Tip1 on Frame2 */
dgeod1(Tip1, T ip2) = GeodesicDistance(Tip1, T ip2, F rame2) ;

/*Project Tip2 on Frame1 */

dgeod2(Tip1, T ip2) = GeodesicDistance(Tip1, T ip2, F rame1) ;

Similarity = e−min(dgeod1
,dgeod2

) ;
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4.3 Microtubule Body Formation Based on Geodesics

After computing the maximum weight match for the constructed graph of tips, we can

use the microtubule tracks formed by the matched tips to compute dynamic param-

eters of importance of microtubules such as growth and shortening rates. However,

computing microtubule dynamic parameters from the tip locations results in inaccurate

lengths when the microtubule shape cannot be approximated by a straight line. More-

over, microtubules move laterally or change shape from frame to frame which affect

the calculated length in the case of following tips. For instance, manual methods com-

pute the lengths in frames by taking the Euclidean distance between tip location and an

arbitrarily selected reference point on microtubule body, which are then used to find the

growth or shortening values in consequent frames. Instead, computing the length as the

shortest path along the microtubule body (i.e. a geodesic) is a more accurate alternative

(see Fig.4.5). Beside accurate length computation, tracking the microtubule body en-

ables further insights such as studying the effect of different experimental subjects on

the curvature of the microtubule, which was not possible before.

The microtubule body in the first frame fk of the track is computed as follows.

Denoting the tip location on the microtubule of interest as tstart, the goal is to find a

point tend on the microtubule to form the body. For this purpose, let us first define the

set P of points satisfying:
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(a) (b)

Figure 4.5: Estimate of length (a) original, (b) Euclidean vs geodesic.

P = {ti∀(

ti∫
tstart

If (s)ds) < ξ} (4.5)

where If (.) is the second derivative of Gaussian filtering of the image frame I(.):

If (x, y) = max
θ

(I(x, y) ∗ G′′
σ,θ(x, y))

In other words, the set of points P is the one for which the geodesic distance from the

tip tstart is below the threshold ξ determined experimentally. Using the set P , tend is

defined as maximizing the following:

tend = arg max
cand∈P

‖tstart − tcand‖2 (4.6)

This is equivalent of finding the path with minimum curvature originating from the tip.

A gradient descent is used to trace the microtubule body from the tip to the ending

point determined on the microtubule. The procedure of tracing the microtubule body is

depicted in Fig. 4.6. To compute the set of points P which have the geodesic distance
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from the tip tstart below the threshold ξ, we start by computing a geodesic distance

transform with the initial starting point at the tip.

By computing tend, the microtubule body is now represented by two end points,

one is the tip and the other one we call the fixed point. The name fixed point comes

from the fact that it is kept fixed along the microtubule track for the remaining frames.

For subsequent frames, the problem of extracting the body of the microtubule becomes

microtubule body deformation between the fixed point and the tracked tip in every

frame. The deformation of the microtubule body is carried out using an active contour

based on line features and curve smoothness constraints explained in the next section.

4.3.1 Active Contour for Microtubule Body Tracking

“Snakes” are deformable contours that are initialized on the image plane and allowed

to evolve under the influence of a set of internal and external forces. Let the contour be

represented parametrically as C(s) where s ε [0, 1], an energy functional that needs to

be minimized is defined as follows:

E(C(s)) =

1∫
0

(Eint(C(s)) + Eext(C(s))) ds (4.7)

where Eint(C(s)) is the internal snake force composed of a balanced weight of ten-

sion and rigidity of the contour. Since microtubules appear as curvilinear structures

in an image I(x, y), ridge (accordingly valleys) features are used as the external force

Eext(C(s)). Ridge features can be detected using a second order derivative of a Gaus-
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(a) (b) (c)

(d) (e)

Figure 4.6: Microtubule body formation in the first frame of a track (a) a window

around the considered tip in the track with tip overlaid as a black square on the

window, (b) the filtering result of the window used as an input to the geodesic

distance transform, (c) the distance transform from the tip with darker values

denoting smaller distances, (d) points satisfying a distance threshold less than 1,

(e) the extracted microtubule body.
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sian G′′
σ(x, y) with a scale σ. Consider the following external force:

∇Eext = w1 (−∇L) + w2 Lsgn(〈−∇L,
−→
N 〉)−→N (4.8)

where the first term

L(x, y) =
1

1 + |G′′
σ(x, y) ∗ I(x, y)|2

is a gradient vector field created from the line detector response |G′′
σ(x, y) ∗ I(x, y)|.

The purpose of this vector field is to pull the active contour towards the desired curvilin-

ear structure of the microtubule. The second term L.sgn(〈−∇L,
−→
N 〉).−→N is a balloon-

based term used to speed convergence of the contour and to help moving the contour in

smooth areas. The sign in L.sgn(〈−∇L,
−→
N 〉).−→N is inspired by the work of [69]. It is

clear from (4.8) the connection with geodesic active contours evolution equation [17],

but here the ridge features are used instead of the edge features.

The classical way of solving the minimization of the function in (4.7) is to use

the Euler-Lagrange condition based on calculus of variations principles. The Euler-

Lagrange condition for (4.7) is:

−(αC ′(s))′ + (βC ′′(s))′′ + ∇Eext = 0 (4.9)

C ′(s) and C ′′(s) are the tension and rigidity of the contour, respectively. C ′(s) and

C ′′(s) are computed as the first and second order derivative of the contour, respectively.

All derivatives in (4.9) are computed with respect to the curve parameter s. In the case
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of constant weights α and β on the contour and a 2-D active contour problem (on the

(x,y plane)), the Euler-Lagrange in (4.9) gives the two conditions:

−αx′′(s) + βx′′′′(s) +
∂Eext

∂x
= 0 (4.10)

and

−αy′′(s) + βy′′′′(s) +
∂Eext

∂y
= 0 (4.11)

In the discrete image space, the contour derivatives are approximated using finite dif-

ferences leading to the following pair of equations:

Ax +
∂Eext

∂x
= 0

Ay +
∂Eext

∂y
= 0 (4.12)

where A is a penta-diagonal matrix of snake parameters expressed in terms of the

weights α and β, as shown in Fig. 4.7.

Zero elements

Non-zero diagonal 
elements

Zero elements

Non-zero diagonal 
elements

Figure 4.7: An illustration of the penta-diagonal structure of the matrix A in

(4.12).
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It is worth noting here that at end points of the contour, we need to add external

constraints when computing finite differences. For example, in case of a closed con-

tour, circular shifting is usually used. In the case of an open ended contour, linear

extrapolation at end points can be employed. Solving for (4.12) implies searching for

all possible contours on the digital image space to attain the balance of external and

internal forces. Since this is a very expensive solution, we resort to local methods by

assuming an initial contour location near features of interest, and allow the contour to

evolve using ideas from curve evolution by introducing an artificial time parameter t:

Ct = (I + τA)−1Ct−1 − τ∇Eext(C
t−1) (4.13)

where I is an N ×N unit matrix for a contour represented using N points in the digital

space, Ct and Ct−1 are the contours representations in two successive evolution steps

and τ is the time step used in the discretization.

4.3.2 Tracking Results and Quantitative Performance Evaluation

We have applied our automated tracking algorithm on 250 microtubule videos, gener-

ating on average 20-25 microtubule tracks per video. The microtubule videos used for

tracking were supplied by Kathy Kamath from the Neuroscience Research Institute at

University of California Santa Barbara [4]. The videos are based on two microtubule

studies of the effect of: a) different drugs, and b) the isotype β-III on microtubule dy-

namics. In our implementation of the spatiotemporal graph matching, we allowed up to

three missing frames between tips of the same microtubule track. For the computation
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of the geodesics, we used the Fast Marching algorithm [99]. Consider the computa-

tion of a geodesic distance T (x, y) on a 2-D weighted flat domain from an initial point

(x1, y1). This results in solving the following 2-D eikonal equation:

|∇T (x, y)| = F (x, y) (4.14)

with the boundary condition that T (x1, y1) = 0. The 2-D equation is numerically ap-

proximated by using a upwind scheme for the computation of partial derivatives [70]:

(max{Tij −min{Ti−1,j , Ti+1,j}, 0})2 +(max{Tij −min{Ti,j−1, Ti,j+1}, 0})2 = (Fij)
2

(4.15)
where Tij = T (iδx, jδy) with (δx, δy) is the discretization step in the 2-D domain

taken to be (1, 1) and Fij = F (iδx, jδy) taken as the filtered image frame. Equation

(4.15) is then efficiently solved by following the order of propagation of information

from the initial point (x1, y1) using a binary heap data structure. The computational

complexity of the Fast Marching algorithm is O(MlogM) where M is the number of

points in the 2-D plane for which T (x, y) is computed.

The complete tracking of microtubules within a video of 30 frames takes approxi-

mately 30 minutes using a Matlab implementation on a 3 GHz P-IV machine with 1G

RAM. Fig. 4.8 to Fig. 4.14 show example results on some of the frames. To evalu-

ate the tracking performance of microtubules, we manually tracked microtubule tips in

two video sequences. The tip tracking performance is shown in Table 4.1. The aver-

age microtubule track duration in these videos is 25 frames. The computed errors are
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Microtubule video # MTs μerror σerror

1 10 2.25 2.64

2 16 2.85 4.36

Table 4.1: Microtubule tip tracking performance. The average duration of the

microtubule video tracks is 25 frames.

within the acceptable margins for biologists for further manual/computer analysis. As

we mentioned before, there are no currently publicly available methods and datasets

where such a performance has been documented.

4.4 Summary

We have presented in this chapter a novel, fully automated, tracking technique for

microtubules. The technique addresses challenges in microtubule videos such as low

signal-to-noise ratio, frequent occlusions, and lateral motion of flexible structures. Track-

ing is based on a spatio-temporal contour tracking approach that can handle missing

features and resolve tracking conflicts. The features used for tracking the microtubules

are the tips detected, as discussed in Chapter 3 (Section 3.2.3). The detected tips from

all the frames are used to construct a graph. By computing a maximum matching over

the graph, we can generate microtubule tracks. Based on the maximum matching re-

sults of tips, microtubule are formed using a Fast Marching technique and deformed

83



Chapter 4 Spatio-temporal Tracking of Microtubules in Live Cell Imaging

frame 4 frame 10 frame 14

Microtubule tracked

frame 4 frame 10 frame 14

Microtubule tracked

Figure 4.8: Example frames (4, 10, and 14) from automatically computed mi-

crotubule tracks.

frame 4 frame 12 frame 25

Microtubule tracked

frame 4 frame 12 frame 25

Microtubule tracked

Figure 4.9: Example frames (4, 12, and 25) from automatically computed mi-

crotubule tracks.
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frame 5 frame 18 frame 29

Microtubule tracked

frame 5 frame 18 frame 29

Microtubule tracked

Figure 4.10: Example frames (5, 18, and 29) from automatically computed mi-

crotubule tracks.

frame 4 frame 14 frame 23

Microtubule tracked

frame 4 frame 14 frame 23

Microtubule tracked

Figure 4.11: Example frames (4, 14, and 23) from automatically computed mi-

crotubule tracks.
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frame 5 frame 7 frame 14

Microtubule tracked

frame 5 frame 7 frame 14

Microtubule tracked

Figure 4.12: Example frames (5, 7, and 14) from automatically computed mi-

crotubule tracks.

frame 4 frame 10 frame 17

Microtubule tracked

frame 4 frame 10 frame 17

Microtubule tracked

Figure 4.13: Example frames (4, 10, and 17) from automatically computed mi-

crotubule tracks.
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frame 5 frame 12 frame 25

Microtubule tracked

frame 5 frame 12 frame 25

Microtubule tracked

Figure 4.14: Example frames (5, 12, and 25) from automatically computed mi-

crotubule tracks.

in every frame using an active contour. We presented quantitative evaluation of the

tracking performance for a set of manually tracked microtubules. By generating a large

number of full-body microtubule tracks, very useful and previously non-acquirable data

can be harvested. Example applications include: 1) quantifying the effect of different

experimental conditions on microtubule shape since we have full body tracking, and 2)

modeling the full time series of the microtubule tracks using statistical tools for a better

understanding of the underlying cell mechanisms regulating microtubule behavior.
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Information Extraction from

Microtubule Videos

The tracking of microtubules, whether carried out manually or automatically, produces

a time series corresponding to the length of each microtubule under a specific experi-

mental condition. The traditional method of analyzing these time-series data is to cal-

culate statistical parameters characterizing the dynamic behavior of microtubules such

as growth and shortening rates. However with the capability of automatically tracking

microtubules, we have a rich dataset of full body microtubule tracks on which we can

apply powerful data mining tools and statistical models to discover new information

previously inaccessible. In this chapter, we start by motivating the approach of using

statistical modeling tools for microtubule tracking data. Our first contribution is in in-

vestigating the use of hidden Markov models (HMMs) as a powerful analysis tool and
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show how it fits as a model for microtubule dynamics. The main motivation behind

the use of HMMs is that we consider the growth and shortening of microtubules as ob-

servations we are making of an underlying hidden cell process. Furthermore, HMMs

allow us to model the full time history for a microtubule rather than the simple statis-

tical measures currently used. The second contribution in this chapter is to propose a

temporal association rule mining algorithm for extracting important patterns of dynam-

ics in microtubule tracks. The hypothesis is that microtubule behavior follows certain

common patterns that we can describe, setting the stage for subsequent mechanistic

biochemical investigations.

To the best of our knowledge, there is no prior work which uses advanced statistical

modeling techniques to uncover mechanisms of microtubule dynamics. This is mainly

due to the lack of automated feature extraction methods needed for the use of mod-

eling techniques. The main motivation behind exploring statistical modeling tools is

that microtubule dynamics are a fundamentally important feature of essentially all eu-

karyotic cells, yet it is also a process that is poorly understood, having many ill-defined

regulating factors influencing it. Statistical tools allow us to fuse a number of differ-

ent influencing factors to arrive at meaningful inferences. The statistical nature of the

modeling process allows a degree of uncertainty which is a characteristic of many bio-

logical processes, microtubule dynamics being one of them. For a given experimental

condition, we can not guarantee that the behavior of all microtubules within a cell will

follow a deterministic and known trend.
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The rest of the chapter is as follows. In Section 5.1, we outline the main information

extraction tasks capable of advancing microtubule research. We specifically discuss the

application of classification, retrieval, modeling and pattern mining techniques for mi-

crotubule videos. Applicable related work on general image and video is overviewed

in Section 5.2. We motivate the use of statistical modeling tools for microtubule videos

in Section 5.3. Specifically, we construct hidden Markov models for microtubule dy-

namics in Section 5.4. These models are used to quantify similarities in microtubule

dynamics between different experimental conditions. Extraction of temporal patterns

of dynamics of microtubules is addressed in Section 5.5 using a temporal rule mining

algorithm. Finally, we give a summary of the chapter and the main contributions in

Section 5.6.

5.1 Information Discovery tasks for Microtubule Videos

We first highlight the potential applications of data mining tools for microtubule videos,

and then present a literature review on current approaches to extract information for

general classes of video data. Examples of the information discovery tasks that can be

carried out on microtubule videos include:

1. Classification/Clustering of microtubule videos: The goal here is to discover

common characteristics of different effectors, such as drugs or regulatory pro-

teins on microtubule dynamics.
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2. Modeling microtubule dynamics: By developing models of microtubule dynam-

ics under different experimental conditions, one can acquire a better understand-

ing of the underlying molecular mechanisms governing microtubule activity. Fur-

thermore, model scoring can be used as a similarity measure between different

experimental conditions as well as a prediction for new treatments.

3. Similarity search: Given a database of microtubule videos or microtubule track-

ing data, one can search for similar microtubule videos in terms of dynamics or

other attributes such as microtubule contour curvature. A possibility here is to

use model scoring as a similarity measure between different videos.

4. Identifying common patterns of growth and shortening in a given experimental

condition: An important biological question is to define different experimental

conditions that yield similar consequences. For example, we can quantify how

likely a large growth event is followed by an attenuation for cells in various exper-

imental conditions. To evaluate such temporal patterns, one can custom design

association rule mining algorithms to compute frequent patterns in the micro-

tubule tracking data.

In the literature, very few papers actually deal with information extraction or model-

ing of microtubule videos. Example works for the physics and mechanical-based mod-

eling of microtubule data include [45], [46], [79], [80], [84], [91]. In [91], the authors

study, via numerical simulation on simplified physical models, how the interaction be-

tween microtubules and the free tubulin affect the spatial organization of microtubules.
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In [80], the authors use cytoplasmic fragments of melanophores and cytoplasts of BS-

C-1 cells to study microtubule centering mechanisms. Centering refers to microtubules

arranging themselves in a radial fashion from the center point of a microtubule aster.

The nature of the microtubule centering mechanism around the central position aster

is still poorly understood. Using live imaging, with mathematical modeling and com-

puter simulation, the authors demonstrate that the microtubule aster discovers a central

location in the cytoplasm by moving along spontaneously nucleated non-astral micro-

tubules towards a point at which microtubule nucleation events occur equally on all

sides.

Statistical techniques have received less attention from researchers for microtubule

dynamics studies [33], [74], [115]. However, we are not aware of any prior work trying

to develop generative statistical models for microtubule dynamics under different exper-

imental conditions. In [115], the authors propose a novel algorithm based on multiscale

trend analysis for the decomposition of organelle trajectories, driven by microtubule

motors, into plus-end or minus-end runs, and pauses. This algorithm is self-adapted

to the characteristic durations and velocities of runs, and allows reliable separation of

pauses from runs. In [33], the dynamics of the kinetochore microtubules in G1-phase

yeast cells are automatically quantified. Two tags are automatically tracked to quantify

the dynamics: one close to centromere (CEN) and the other fused to spindle pole (SPB).

The dynamics are statistically classified, through hypothesis testing, into the three main

types: poleward, anti-poleward and pause. In [74], the transport of pigment granules by
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motors along microtubules is studied. Automated tracking of pigment granules along

microtubules is carried out. The computed granules velocities have a multimodal distri-

bution. Hence, the authors in [74] propose a model in which multiple motor molecules

are responsible for granule transport across microtubules.

Based on the discussed areas where information discovery can be very useful for

microtubule videos, we review related work in multimedia mining, for general video

and image data, in four main areas:

• Classification/clustering of video data.

• Content-based video retrieval and search.

• Extracting multimedia association rules.

• Modeling activity and video content.

5.2 Related Work on Information Discovery in Image

and Video Data

5.2.1 Classification/Clustering of Video Content

Classifying/clustering video content has been a very active research area. Examples

include [86] where the authors introduce the concept of a multiject (probabilistic multi-

media object) that represents several high level concepts occuring in the video. Multi-

jects can be of three types : a) objects (cars and trees), b) sites (indoor, beach), c) events
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(explosion, basket scoring). Classification is performed through the use of Bayesian Be-

lief Networks (BBNs). In [117], tree classifiers are used to classify basketball videos

into different types of plays based on extracted motion and edge features. In [87],

classification is performed on sports videos to separate the two teams’ players using a

spatio-temporal slice approach by considering the video as a 3-D spatio-temporal vol-

ume. A multistage decision system is used in [58] to classify video sports data using

characteristic visual cues for each type of sports. The first stage is a decision tree which

generate hypotheses of the video content. A hidden Markov model is then used as a

second stage to bridge the gap between the user high level concept and the actual visual

content. In [78], self-organizing maps are used in generating a texture thesaurus for

aerial images based on homogeneous texture features. In [64], a view-based approach

is used to recognize humans from their gait. Two sets of features are used for gait de-

scription: a) the width of the outer contour of the binary silhouette and the entire binary

silhouette. The features are used to train hidden Markov models for the recognition of

humans by gait. Hidden Markov models are also used in [103] to recognize different

activities performed by humans such as standing up, sitting down and walking. For

molecular biological applications, clustering of gene expression data has been previ-

ously addressed in the literature [47] and [24] with the motivation that co-expressed

genes can possibly reveal common biological function. In [47], a modified version of

fuzzy k-means is used to identify groups of functionally related genes. Similarities in

gene-expression patterns are used in identifying correlations between yeast genes and
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the experimental conditions. Co-expressed gene cluster identification is also addressed

in [24] using a density-based clustering.

5.2.2 Extracting Video Association Rules

Extracting association rules in the form of frequent patterns occurring in the data has

been extensively studied in the literature for applications such as market basket analy-

sis. There exists in the literature efficient algorithms to extract rules from transactional

data [6], [12]. Previous research efforts in multimedia association rule mining include

finding spatial co-occurrences of different geographical areas in aerial images [106],

where the spatial event cube (SEC) is used to discover elements of first and higher or-

der item sets. Besides, the SEC provides a visualization tool for the different image

classes. In [10], authors propose mining techniques such as finding periodic patterns to

mine for video editing rules. The extracted rules about video editing could be used in

editing another video.

In ClassMiner [118] and more recently in [119], a conventional decomposition of

medical video data into shots is used, followed by extracting audio-visual features, and

mining three types of events: presentation, dialog, and clinical operation. Mining in

this work refers to the classification of the video content into different types of scenes.

Based on the video content clustering, a scalable video skimming system is developed

which allows access to the video content at various levels of details.

In MultiMediaMiner [114], a hierarchical representation of video assets is devel-
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oped based on content or keyword concepts. The system allows similarity compar-

isons using color of video sequences, and discovers association rules between pairs of

feature descriptors corresponding to these sequences. Another example of using mul-

timedia data mining is in generating a good training set for a neural network from a

large amount of multimedia data [82] and in automatic feature selection for unsuper-

vised video structure discovery [111]. In [71], the concept of VideoTrails is introduced.

Video frames are reduced to a trail of points in a low dimensional space. In this space,

the frames are clustered, and transitions between clusters are analyzed to characterize

the resulting trail. By classifying portions of the trail as either stationary or transi-

tional, gradual edits between shots can be detected. However, the authors in [71] did

not address the problem of extracting temporal association rules from the video data.

High-level representation of the structure of the video content was also used in

previous work to extract rules about the video content. Examples are in the case of

news videos [35], documentaries [77], in sports [116] and in movies [44]. In other

approaches, specific domain constraints were used to model certain types of events

such as for Basketball videos [98], [117], soccer [72], [49] and tennis video [83], [102].

5.2.3 Content-based Video Retrieval and Search

To automate search by content, different features are extracted from videos, and re-

trieval is performed using a similarity metric on the extracted features to obtain the

most similar objects/regions. In general, video retrieval systems can be broadly classi-
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fied into two main types:

• Object-based systems [102], [83], [86], [20], [31]: These systems perform first a

spatio-temporal segmentation on the video sequence into a set of regions/objects.

The queries are issued for specific objects with certain attributes such as color,

texture and motion.

• Holistic systems [98], [44], [35], [57]: These systems do not perform segmenta-

tion, and operate globally on the whole video frame.

In the case of microtubule videos, we are usually interested in estimating the dy-

namics on a per microtubule basis. This makes the object-based retrieval systems more

suitable for use with microtubule video data. For this purpose, the microtubule tracking

data can be employed as features for searching.

5.2.4 Modeling Video Data

Modeling the video content has been proposed in the literature for content understand-

ing, classification and searching applications. Example work include the work by

Naphade and Huang [86] where they model the video content using the concept of

a multiject that represents several high level concepts occurring in the video such as

explosion. One type of models that gained much interest in the literature of modeling

the temporal natural video content as well as recognition of specific activities are the

Hidden Markov Models (HMMs) which are doubly embedded stochastic generative
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models [92]. In the past, HMMs have been successfully used in numerous applica-

tions. Particularly in activity detection and recognition contexts, HMMs were used in

human activity recognition [56], abnormal activity detection [109], gesture recogni-

tion [15] and American sign language recognition [110]. Another type of models used

primarily for time series data -such as microtubule tracking data- are auto regressive

moving average models (ARMA) [22] which can be used for classification and predic-

tion. However, the stochastic nature of HMMs make them more flexible and adaptive

tools for modeling video content.

5.3 Statistical Modeling of Microtubule Tracks

Traditional measures of microtubule activity consist of simple statistics of dynamics

computed from microtubule tracking. The computed statistics combine together differ-

ent growth and shortening events. Since we do not preserve the entire life history plots,

we can not answer questions on common behavior between experimental conditions

based on individual tracks. In this chapter, we explore an alternative to the traditional

analysis by considering statistical modeling of microtubules.

First, we motivate the use of modeling for microtubules. In general, the goal behind

modeling any natural process is to: a) understand how it is behaving and b) being able

to predict its outcome in the future. Understanding how a process behaves can help in

controlling it, thereby preventing or rectifying any malfunction. Having the ability to

predict an outcome of a process can help taking preventive measures if a failure is im-
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minent. To relate this to microtubule videos, we aim at building models for microtubule

dynamics that give us a better understanding of why microtubules behave as they do for

a given experimental conditions. In other words, what are the main factors regulating

the microtubule dynamics and how do they work mechanistically? Furthermore, by

having models of microtubule dynamics, we can predict behavior thus having a better

handle on common behavior under different test subjects such as microtubule associ-

ated proteins (MAPs) and drugs. One can suggest new microtubule studies by making

predictions based on constructed models for known experimental conditions. One of

the main characteristics of microtubule dynamics is that not all the microtubules in one

cell show the same dynamic behavior. The variation of dynamic behavior within the

same cell, or experimental condition, can be due to many factors, many of which are

poorly understood. To account for this uncertainty, we propose the use of statistical

modeling tools for microtubule dynamics.

Finally, consider the situation that we want to model a process to understand the

underlying factors governing its outcome. We are able to observe its outcome, but

we are interested in the underlying unobservable (i.e hidden) state of the process that

leads to the observed outcome. For example, in the case of microtubule videos, we are

observing growth and shortening of microtubules, yet what is more important is to know

why microtubules grow or shorten and how they do it. A possibility is that microtubules

are growing and shortening to separate the chromosomes in a cell division or to allow

transport of proteins from one end of the cell to the other. The molecular mechanism
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by which the microtubules grow or shrink is unknown, but it can be modelled as a set

of cell states, which are not directly observable. These hidden states can be inferred

from a secondary observable output. To statistically model a process where we want

to understand the hidden state(s) reflected as observable outputs, we need a doubly

embedded stochastic process. This refers to a system whose observable outputs are a

stochastic process and whose internal states follow another stochastic process. One of

the most powerful and successfully applied doubly embedded stochastic models is the

Hidden Markov Model (HMM).

The main features of hidden Markov models that make them a suitable candidate

for microtubule dynamics modeling are:

• HMMs are stochastic models that can provide a measure of how well a mi-

crotubule behavior matches the trained model. This is very useful for classi-

fication, searching and predicting commonalities between different microtubule

treatments.

• HMMs allow the emission state observations to be of different lengths, a case

that is often encountered with the tracking of microtubules.

• We can interpret the HMM parameters to get a better understanding of the under-

lying microtubule dynamic process.

• By modeling a process through hidden states, HMMs have the power of relating

the observations to something that is not directly observable, hence uncovering

100



Chapter 5 Information Extraction from Microtubule Videos

underlying cell states (i.e. molecular events) that affect our observations of dy-

namics.

5.3.1 Hidden Markov Models (HMMs)

Consider a system that can be described to be in one of N different states at any given

time. At uniformly spaced time points, the system can undergo a change of state, or

remain in the same state with some probability as shown in Fig. 5.1. This is referred

to as a discrete time stochastic process. Let us denote the discrete time instants that the

system go through to be t = 1, 2, 3, ..., T , and its state at any given time by qt. For a

transition between state i and state j at time t, there is an associated probability denoted

by aij(t). In the general case, specifying aij(t) for all the states, at every time instant,

would involve the current state and all the previous states, such that:

aij(t) = P (qt = j|qt−1 = i, qt−2 = k, ...) (5.1)

q2

q4q1

q3

a14

a11

a34

q2q2

q4q1q1

q3q3

a14

a11

a34

Figure 5.1: A discrete random process with 4 states, q1 through q4. The transition

probabilities are shown symbolically as aij(t) = P (qt = j|qt−1 = i, qt−2 =

k, ...)
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However, in the case of a first order discrete Markov process, the probability of visiting

a particular state depends only on the state at the previous time instant. Hence, aij(t) is

simplified as:

aij(t) = P (qt = j|qt−1 = i) 1 ≤ i, j ≤ N (5.2)

Furthermore, if we assume the system to be time independent, then aij(t) is not a

function of time and can be simply denoted as aij . To satisfy stochastic constraints, the

following condition should hold for aij:

N∑
j=1

aij = 1 (5.3)

In the case of a system (or process) whose output is fully specified by the state the

system is in, we refer to it as a fully observable process. In other words, knowing the

output of the system, we know exactly which state the system is in.

To allow for a greater flexibility in process modeling, we can allow some degree of

variability (represented by uncertainty) in the observations at each state. This turns out

to be very useful in stochastic system modeling such as in speech modeling systems.

In such case the model used to describe the stochastic process will be doubly stochas-

tic in nature. The observation (output) at each state will be random. The underlying

stochastic process (the state sequence of the system) is not directly observed, rather

indirectly through another stochastic process (the observations). An example of such

an embedded doubly stochastic process model is the hidden Markov model (HMM).

102



Chapter 5 Information Extraction from Microtubule Videos

Observations and Hidden States

The main elements of an HMM are:

1. The number of states N : It is usually an unknown parameter of the modelled process,

since these are hidden states. However, depending on the application, one may have

a guess on the number of states that the process is likely to go through using prior

knowledge of the problem at hand.

2. The type and number of observations at each state: There are two different choices

for the type of observations at each state, one can use either a discrete set or a continuous

set of observations. In the case of a discrete set, we have an M -symbols alphabet

observations. Each observation, at a given state, can be one of the possible M symbols

from the alphabet Z = z1, z2, z3, ..., zM . In the case of continuous observations at each

state, the alphabet size is infinite such as the case when a observation at each state

follows a Gaussian distribution.

3. The initial state distribution: This is denoted by the π vector whose elements πi

represents the initial state distribution, i.e the probability of the system being modelled

by the HMM to start at state i. hence:

πi = P (q1 = i) 1 ≤ i ≤ N (5.4)

4. The state transition probabilities: These are concisely represented by the matrix A

whose elements are the aij with each row satisfying the stochastic constraint in (5.3).

The structure of the transition probability matrix is determined by the type of HMM
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being used. The two major types are:

1. Fully connected (or ergodic) HMM: where all the aij are allowed to take non-zero

values, thus all state transitions are allowed.

2. Left-to-right (or evolutionary) HMM: in which case, the HMM is always con-

strained to start at a specific state and goes, only, forward to another state. In

such case there is only a subset of entries in A that are are allowed to assume

non-zero values, while other values are clamped to zero.

The two types of HMMs implied by the structure of the transition probability matrix

are shown in Fig. 5.2.

q1 q4q3q2q1q1 q4q4q3q3q2q2

(a)

q1 q4q3q2q1q1 q4q4q3q3q2q2

(b)

Figure 5.2: (a) An example of a left-to-right HMM, note that the transition are

always forward. (b) An example of a fully connected HMM with transitions in

both directions.

Example transition matrices for the HMMs shown in Fig. 5.2 are as follows (the

matrix on the left is for the left-to-right HMM):
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8 0.1 0.1 0

0 0.6 0.2 0.2

0 0 0.2 0.8

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8 0.1 0.1 0

0 0.3 0.3 0.4

0.2 0 0.5 0.3

0 0.5 0 0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that for a left-to-right HMM, the last state (N = 4 here) will always have aN=1.

5. The observations probabilities at each state: In a hidden Markov model, we do not

know which of the states the system is in. However, we observe at each time instant

an output, which we refer to as observation. Depending on the nature of the output

observed at each state, we consider the two cases:

1. Discrete observations: We denote the observation probabilities by the matrix B

with rows denoting the states 1 ≤ j ≤ N , and columns denoting each one of the

M discrete observation symbols. An element in B denoted by bj(k) is computed

as:

bj(k) = P (ot = zk|qt = j) (5.5)

where zk is the observation symbol at time t and ot ∈ {z1, z2, ...zM}.

2. Continuous observations: The continuous observation distribution at each state is

described by a probability density function (pdf) bj(o) at each state j. The form

of the probability density function is arbitrary. For example, one of the most
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general probability density functions is the mixture of Gaussian distribution at

each state:

bj(o) =
P∑

h=1

αjhN(o, μjh, Cjh) (5.6)

where N(o, μjh, Cjh) is a Gaussian distribution of mean μjh and covariance Cjh

in the general case when the observation o is a vector of values. P is the number

of Gaussian components in the mixture and αjh is the weight assigned to each

Gaussian with
P∑

h=1

αjh = 1

From the above discussion on the HMM elements, we can see that an HMM can be

concisely described by its parameters λ = (π, A, B), where πi are prior, aij ∈ A are

transition, and bij ∈ B are observation or emission probabilities.

The Main Challenges for HMMs

Assume that we are given a set of L observation sequences ψ = {ψ1, ψ2, ..., ψL} that

are emitted from a process we want to model using an HMM. An observation sequence

ψr in ψ has the form:

ψr = (or1, or2, or3, ..., orTr) (5.7)

Note that the time duration of the rth observation sequence is Tr i.e, it can be varied

from observation to the other. One of the main advantages of HMM is that it can
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handle varying duration observation sequences. To be able to apply HMM for modeling

practical stochastic processes, one needs to be able to perform the following tasks:

• Estimate the parameters λ of an HMM given a set of training observation se-

quences ψr for 1 ≤ r ≤ L. This corresponds to finding the model parameters

λ = (π, A, B) that maximize P (ψ|λ).

• Given an observation sequence ψr = (or1, or2, or3, ..., orTr), and an HMM with

parameters λ = (π, A, B), how can we efficiently compute the probability of the

observation sequence P (ψr|λ)?

• Given an observation sequence ψr = (or1, or2, or3, ..., orTr), and an HMM with

parameters λ = (π, A, B), how can we estimate the state sequence that ”best”

explains the observation sequence?

The first problem of estimating the HMM parameters based on training observa-

tion sequences is commonly solved, for the case of maximal likelihood training, using

the Baum-Welch algorithm [92] (a version of the EM algorithm [30]). An important

sub-problem in training the HMMs is that of initialization. Since the EM procedure is

essentially a local optimization algorithm for maximum likelihood parameter estima-

tion, we expect the solution obtained to be only a local one. Hence, different initial-

izations may result in different HMMs being estimated. Example of the approaches

used for initialization as discussed in [92] are random initialization and segmental K-

means. The second problem of estimating the probability of an observation sequence
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to be generated from an HMM with parameters λ is solved using either the forward

or backward procedures [92]. Finally, the optimal state sequence is solved using the

Viterbi algorithm [92].

5.4 Hidden Markov Modeling of Microtubule Dynam-

ics

The dynamics associated with microtubule growing and shortening, under different ex-

perimental conditions, can be modeled using an HMM. The parameters of the HMM of

one condition are estimated using training data belonging to the same condition. The

number of HMM states is determined experimentally using an independent test set. The

standard procedure is to try different number of states and see which one will best fit

the available observations or leads to the best performance [64], [103]. Since we are

usually faced with the problem of estimating models based on a limited amount of ob-

servations, one needs to use an independent test set, sometime called a validation set,

to see how well the model fits the data. The purpose of a test set to check for model

fitting, rather than the same training data used to estimate the model, is to avoid model

over-fitting [23]. Hence, the optimal number of states is estimated as the one maxi-

mizing the likelihood over an independent test set. The observations at each state of

the HMM are the growth and shortening amounts of a microtubule from a video frame

to another. In other words, the observations are the growth (or shortening) rates per
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frame. For the case of growth, the observation takes a positive scalar value, while it

has a negative value in the case of shortening. We assume that the observations at each

HMM state follows a single Gaussian distribution. For each experimental condition,

we also choose the type of the HMM –i.e ergodic or evolutionary– by maximizing the

likelihood on an independent validation set. The HMM parameters for each experimen-

tal condition are trained using the maximum likelihood principle by the Baum-Welch

algorithm. By examining the distances between the HMMs of different experimental

conditions we assess, in a quantitative manner, the similarity between any two exper-

imental conditions. Though similarity between different experimental conditions is

already biologically known for a number of experimental conditions, yet there has been

no quantitative measure for it.

5.4.1 Experiments and Results

Dataset

A well established biological observation is that paclitaxel suppresses microtubule dy-

namics [113]. In this work, we use HMMs for describing microtubule dynamics using a

dataset of a study on the effect of a particular tubulin isotype –the βIII [38]. It is known

that there are at least seven isotypes of the β-subunit of tubulin in humans, namely

βI, βII, βIII, βIVa, βIVb, βV and βVI. These isotypes differ at the protein level at

the putative binding site for several microtubule associated proteins [38]. The study

in [38] hypothesized that high concentrations of β-III confers upon the cell an acquired
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resistance to paclitaxel in terms of dynamics suppression. Let us first describe how the

βIII-tubulin is over-expressed in a cell. The DNA encoding βIII-tubulin is transfected

into the cells having βI-tubulin. The transfection of βIII-tubulin DNA is performed

using an inducible promoter. A promoter is basically a DNA fragment attached to the

βIII-tubulin DNA, that activates downstream transcription via tetracycline administra-

tion/treatment. However, if the promoter is not induced, the DNA of the βIII will be

in the cell, yet with no βIII protein being expressed (this condition is referred to as

uninduced βIII-tubulin).

In the study [38], there are five experimental conditions for CHO cells:

1. βI-tubulin: This is considered the control experiment for the normal CHO cells.

βI-tubulin is the predominant β-isotype comprising approximately 70% of the total β-

tubulin pool. The CHO cells additionally express lower levels of βIVb tubulin and βV

tubulin. In this control experiment, βIII-tubulin is not expressed. Microtubules exhibit

high dynamicity in this experimental condition.

2. βI-tubulin + paclitaxel: In this condition, the normal CHO control cells were incu-

bated with paclitaxel which normally causes dynamics suppression. Hence the dynam-

ics in this condition are observed to be much slower than the βI-tubulin condition.

3. βIII-tubulin: In this condition, βIII-tubulin has been induced in the cells by trans-

fection with the promoter being induced by tetracycline. As expected, the dynamics in

this case are similar to the first case of having βI-tubulin.

4. Uninduced βIII-tubulin + paclitaxel: This is another control experiment where the
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DNA encoding the βIII-tubulin was transfected into the cells, but without inducing its

promoter. The idea here is to see if just the presence of βIII-tubulin DNA alters the dy-

namics of microtubules. The observations from the study show that this is not the case.

The dynamics of the microtubules were actually suppressed by the presence of pacli-

taxel, despite the presence of the transfected βIII-tubulin DNA. Hence the resistance

acquired by the microtubules against paclitaxel is not due to genetic modification.

5. βIII-tubulin + paclitaxel: This is the main focus of the study, and the central finding

in this work. By increasing the concentration of βIII-tubulin the cell environment,

and it being used for the assembly/disassembly of microtubules, the paclitaxel drug no

longer suppresses microtubule dynamics as was the case in the βI-tubulin + paclitaxel

condition. Hence, the hypothesis that the acquired cell resistance against paclitaxel

effect is associated with increased levels of βIII-tubulin is supported.

To further clarify the five experimental conditions, we show the presence and ab-

sence of the proteins, DNA and paclitaxel in the five experimental conditions in Ta-

ble 5.1. We denote the five conditions βIII-tubulin, βIII-paclitaxel, uninduced βIII-

paclitaxel, βI-tubulin, and βI-paclitaxel by {βIII, βIIIt, βIIItu, βI, βIt} respec-

tively. The presence of a subject is denoted by (+), while its absence is denoted by (-).

HMM Training and Validation

We automatically tracked microtubules from the videos in [38]. A total of 314 tracks

were extracted after a visual inspection of the tracking results. Recalling that the five
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βI protein βIII DNA βIII protein paclitaxel

βI + - - -

βIt + - - +

βIII + + + -

βIIIt + + + +

βIIItu + + - +

Table 5.1: Presence and absence of different agents in the five experimental con-

ditions in the βIII study [38].

conditions βIII-tubulin, βIII-paclitaxel, βIII-paclitaxel uninduced, βI-tubulin, and βI-

paclitaxel are denoted by {βIII, βIIIt, βIIItu, βI, βIt} respectively. We train a sep-

arate HMM for each of the classes. We need to specify the number of states and model

type (fully connected or left-to-right) for each class. To avoid overfitting with the fi-

nite amount of microtubule tracks for each condition, we use the technique of cross-

validation for model selection [23]. We experimented with models having 3 to 5 states

with both left-to-right and fully-connected topologies. We use a 4-fold cross-validation.

As an example, consider fitting the data with 3 states with left-to-right topology. We

partition the microtubule tracks belonging to one experimental condition into 4 separate

subsets denoted by {T1, T2, T3, T4}. First, we use {T2, T3, T4} for training the HMM

and T1 as a validation set for model fitting. We obtain a log likelihood validation score

for the validation set T1, let us denote the score by V alidScore1. Then, we used T2
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for validation and {T1, T3, T4} for training the HMM. We obtain a new log likelihood

validation score for the validation set T2, let us denote the score by V alidScore2. We

compute the validation score for all the subsets in {T1, T2, T3, T4}. The final validation

score for the case of assuming 3 states with left-to-right topology will be:

Score =
V alidScore1 + V alidScore2 + V alidScore3 + V alidScore4

4
(5.8)

We repeat the above procedure, of computing an average validation score for each

candidate model, by considering all the allowed number of HMM states and network

topologies. Finally, the best model is chosen to be the one that leads to the maximum

average validation score. This whole procedure is repeated for the five experimental

conditions.

Quantifying Similarities Between Experimental Conditions

Microtubule dynamic behavior is known to be affected by many regulators, including

microtubule associated proteins (MAPs) and drugs. For example, both the microtubule

associated protein tau and the drug paclitaxel inhibit microtubule dynamics. Similari-

ties between different experimental conditions have thus been established for a number

of test subjects, yet primarily in a qualitative manner. We use the constructed HMMs to

estimate a quantitative dissimilarity measure between the different experimental condi-

tions. We adopt a popular method in comparing two HMMs discussed in [92]. Consider

we have two HMMs with parameters λ1 and λ2. We have a set of observations belong-
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ing to two experimental conditions denoted by O(1) and O(2) respectively:

O(1) = {o1, o2, o3, ...oT1}

O(2) = {o1, o2, o3, ...oT2}

where T1 and T2 are the number of observations for O(1) and O(2) respectively. The

following measure can be used to find the distance (dissimilarity) between λ1 and λ2:

D(λ1, λ2) =
1

T1

(
log P (O(2)|λ1) − log P (O(2)|λ2)

)
(5.9)

This dissimilarity measure quantifies how the observations O(2) match λ1 versus match-

ing its own model λ2. To make the measure in (5.9) symmetric, the final dissimilarity

measure Ds(λ1, λ2) between models λ1 and λ2 is defined as follows:

Ds(λ1, λ2) =
1

2
[D(λ1, λ2) + D(λ2, λ1)] (5.10)

We show in Table 5.2 a five by five matrix showing the distances between pairs

of HMMs describing the five experimental conditions in the βIII-tubulin isotype study

[38]. The smaller the distance, the more similar are the two experimental conditions.

This table of similarities of experimental conditions is useful in assessing, in a quanti-

tative manner, the common and distinct effects of different treatments on microtubules.

The main diagonal has all zeros since the distance of a model to itself is zero. For exam-

ple, consider the distances between the βIII model and the other models. Biologically,

it is observed that the cells over-expressing βIII-tubulin exhibit normal microtubule dy-

namics. This is reflected, in a quantitative manner, in the first row of Table 5.2 as the
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distance between βIII and βI conditions is smaller than either of the distances between

βIII and uninduced βIII + paclitaxel or between βIII and βI + paclitaxel. In other

words, the cells over-expressing βIII-tubulin are more similar, in terms of microtubule

dynamics, to the cells expressing βI-tubulin than they are to the cells treated with pa-

clitaxel (both for βI and uninduced βIII cells).

Investigating the second row in Table 5.2, we directly conclude from the distance

between the βIII + paclitaxel and βIII and the distance between βIII + paclitaxel and

βI + paclitaxel that paclitaxel does not have the same suppressing effect on cells over-

expressing the βIII-tubulin protein as β-I. By examining all the similarities in Table

5.2, we can see that all the interrelations between the five experimental conditions are

preserved with the exception that the first row corresponding to the βIII condition,

in which the distance between βIII and βIII + paclitaxel should be smaller than the

distance between βIII and βIII uninduced + paclitaxel condition.

An alternative method to visualize the distances between the five experimental con-

ditions is to embed the distance matrix in Table 5.2 into a two dimensional space using

multi-dimensional scaling (MDS) [11]. The resulting two dimensional space is shown

in Fig. 5.3. Visually, the two groups of dynamics can be separated as shown by the

two ellipses on the figure. However, we observe that the βIII + paclitaxel condition

is farther from the βIII and βI conditions, which suggests that, though that all three

conditions are characterized by high dynamics, they are not all equidistant in terms of

behavior.
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βIII βIIIt βIIItu βI βIt

βIII 0 0.068 0.066 0.029 0.065

βIIIt 0.068 0 0.080 0.064 0.090

βIIItu 0.066 0.080 0 0.076 0.049

βI 0.029 0.064 0.076 0 0.070

βIt 0.065 0.090 0.049 0.070 0

Table 5.2: Dissimilarities between the HMMs of different experimental con-

ditions in the βIII study [38]. The five different experimental conditions βIII-

tubulin, βIII-paclitaxel, uninduced βIII-paclitaxel, βI-tubulin, and βI-paclitaxel

are denoted by {βIII, βIIIt, βIIItu, βI, βIt} respectively.
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Figure 5.3: A two-dimensional embedding of the distances between the five

experimental conditions {βIII, βIIIt, βI, βIIItu, βIt}. The two ellipses

represent the two group of dynamics g1 = {βIII, βIIIt, βI} and g2 =

{βIIItu, βIt}.
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5.5 Temporal Association Rules in Microtubule Videos

5.5.1 Introduction

Extracting association rules in the form of frequent patterns occurring in the data has

been extensively studied in the literature for applications such as market basket analy-

sis. There exists in the literature efficient algorithms to extract rules from transactional

data exist in the literature [6], [12]. The premise of using rule mining algorithms for mi-

crotubule videos is to extract the frequent patterns in microtubule tracks under different

experimental conditions. However, traditional rule mining algorithms do not explicitly

address the temporal structure inherent in video data. To that end, we need to represent

microtubule videos in suitable forms, from which we can extract frequent rules and pat-

terns of behavior. It is worth pointing here that frequent temporal rule mining should be

able to discover rules that involve more than simply two consecutive time points. For

example, consider the following events:

• S1 denotes an average shortening of 6 pixels.

• S2 denotes an average shortening of 3 pixels.

• S3 denotes an average growth of 5 pixels.

• S4 denotes an average growth of 1 pixels.

• S5 denotes an average shortening of 1 pixel.
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Suppose we want to check for an experimental condition, say a paclitaxel treated

cell, what are the most frequent patterns of dynamic behavior. A pattern of dynamic

behavior is represented as a sequence of events (symbols), such as S1 → S2 → S3. The

main requirements to find frequent temporal patterns involving an arbitrary number of

events are:

• Representing the microtubule video tracks as symbols in an alphabet correspond-

ing to different amounts of growth and shortening.

• Devising efficient algorithms that can compute arbitrary length frequent patterns.

For the first point, we consider quantizing the growth and shortening amounts in

a number of quantization bins and using the bin as a symbol. For the second issue

of devising efficient rule mining algorithm, we are presenting a temporal rule mining

algorithm. The block diagram in Fig. 5.4 shows the proposed microtubule temporal

rule extraction flowchart.

5.5.2 Temporal Association Rule Mining Algorithm

In the following, we introduce a video rule mining method that takes into account the

temporal structure of video. The method can detect temporal ordering and correspond-

ing correlations among symbols denoting different amount of growth and shortening in

microtubule tracks. In this sense it differs from the standard association rule mining

methods [6], [12] that do not explicitly address the temporal structure inherent in such
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Microtubule videos

Tracking
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Figure 5.4: The flowchart of the proposed microtubule temporal rule mining

algorithm.
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data. The proposed method is based on using a multi-level association rules mining

approach and borrowing ideas from the well know Apriori algorithm for association

rule mining [6]. Let Level be the length of a rule pattern that is discovered. When the

level increases, the rule pattern becomes longer and more complex. For instance, the

rules at Level 2 can be:

S1 → S2

which means that state S1 of 6 pixels average shortening is followed by state S2 of 5

pixels average shortening (the numbers are just used as examples). Another example of

a rule at level 3 can be:

S3 → S2 → S3

which means that state S3 of 5 pixels average growth is followed by state S2 of 5 pixels

average shortening, then finally S3 of 5 pixels average growth.

To describe how the temporal association rule mining algorithm proceeds, let us

first define some terms. For a rule R having the form: S1 → S2 → ...Sl → Se, we

define its support to be the probability of occurrence in the symbol stream:

support = P (S1 ∪ S2... ∪ Sl ∪ Se), (5.11)

If the computed support of a rule is greater than a pre-specified minimum support value,

then the rule is referred to as strong. The main goal of the temporal association rule

mining algorithm proposed here is to extract all the strong rules at all levels. Since

checking for every possible candidate rules will be computationally very expensive,
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we use the common anti-monotone property of the support measure of a rule in order

to prune the search space: The sub-rule (part of the rule) of a strong rule must also

be a strong rule, i.e. if S3 → S2 → S3 is a strong rule at level 3, both S3 → S2

and S2 → S3 must be strong rules at level 2. This property is used in our multi-level

association rule mining algorithm (Algorithm 4) to prune the search space of frequent

temporal rules. In this algorithm, the input is a set of R vectors, each of which is

a symbol sequence for a corresponding microtubule track observation sequence. The

set of vectors is denoted by G = {g1, g2, ..., gR}. Consider that we have N symbols,

S1, S2, ...SN each representing an amount of growth or shortening per frame and a

minimum support for any rule denoted as minsupp. At the first level of the algorithm,

we consider rules which consist of just one symbol. We form a candidate set C1 of rules

composed of all the symbols:

C = {S1, S2, ...SN}

We compute the support of each of the candidate rules in C1. We delete all the rules

that have a support less than minsupp. The remaining rules are the strong rules discov-

ered of length-one symbol. In level 2, we first form the candidate set of rules by only

considering the strong rules at the previous level (level 1). This is how we prune the

searching for rules. Consider for example that the strong rules at level 1 are S1, S3 and

S9. The candidate set of rules in level 2 will be formed by trying all different length 2

combinations from the strong rules at level 1. The combinations are order sensitive, so

we consider S1 → S3 and S3 → S1 as different. The candidate set of rules al level 2 is:
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C2 = {S1 → S1, S1 → S3, S1 → S9, S3 → S1, S3 → S3, S3 → S9, S9 → S1, S9 →

S3, S9 → S9}

Again, we prune all the rules that have a support less than minsupp. The same idea of

forming a candidate set of rules and then pruning a subset of them by the minsupp value

is applied to all higher levels.

5.5.3 Experimental Results and Discussions

The input to the microtubule temporal association rule algorithm is a set of R vectors,

each of which is a symbol sequence for a corresponding microtubule track observation

sequence. The set of vectors is denoted by G = {g1, g2, ..., gR}. We extract frequent

temporal rules for the microtubule tracks for the two groups g1 = {βIII, βIIIt, βI}

and g2 = {βIIItu, βIt} respectively. We use a uniform quantizer for the growth

and shortening amounts, and use the bin centers as symbols. We will thus have a

fixed variance, and we can arbitrary choose the number of bins to have a fine or coarse

quantization, and consequently temporal rules. By virtue of a fixed quantization step,

a symbol can be directly related to an amount of growth or shortening. We considered

the following quantization centers: {−12,−6, 0, 6, 12} based on the actual differences

in the microtubule tracking data. We have 5 symbols, S1 through S5, for example the

state S3 corresponds to the range [−3 3]. We used the five symbols to quantize the

differences in microtubule length from frame to frame using the nearest neighbor rule.

The results are shown in Fig. 5.5 for a minimum support of 2%. In these results, the

123



Chapter 5 Information Extraction from Microtubule Videos

Algorithm 4 Rtotal = RuleMining (G,S,N,minsupp,NumLevels)

Input: Symbol sequence G, symbol alphabet S, number of symbols N ,
minimum support minsupp, number of levels NumLevels

Output: Strong temporal rules Rtotal

Rtotal = φ

R1 = ComputeRulesF irstLevel(G,S,N,minsupp);

Rprev = R1;

for level ← 2 to NumLevels do

Rthislevel = φ

for j ← 1 to |Rprev| do

for i = 1 → |R1| do

C = [R1(i) Rprev(j)]

if Support(C) in G >= minsupp then

Rthislevel ← Rthislevel ∪ C

end

C = [Rprev(j) R1(i)]

if Support(C) in G >= minsupp then

Rthislevel ← Rthislevel ∪ C

end
end

end

Rprev = Rthislevel

Rtotal = Rtotal ∪ Rthislevel

end
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Algorithm 5 R1 = ComputeRulesF irstLevel(G,S,N,minsupp);
Input: Symbol sequence G, symbol alphabet S, number of symbols N ,

minimum support minsupp

Output: First level rules R1

R1 = φ

for i ← 1 to N do

if Support(S[i]) in G >= minsupp then

R1 = R1 ∪ S[i]

end
end

right column shows the support of the rule and we extracted rules up to the length of

4 symbols. The main observation from the extracted rules is that there S1 → S5 and

S5 → S1 are frequent temporal patterns in the case of cells where there is no paclitaxel

effect. This means that there is occurrence, above 2%, to have a transition between large

growth to large shortening and vice-versa. This is not the case for the cells affected by

paclitaxel. An interesting observation is that, although we have frequent rules involving

the transition from large growth to large shortening in g1, the rules comprising three or

four symbols do not show the occurrence of either S1 or S5. This means that on a longer

time span, the frequent rules are those involving either small growth or small shortening

only.
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Figure 5.5: Frequent temporal rules of microtubule dynamics for the case of a)

group 1, g1 = {βIII, βIIIt, βI} b) group2, g2 = {βIIItu, βIt}. Symbols are

derived from a fixed quantizers with centers {−12,−6, 0, 6, 12}. The minimum

support used for the rules is 2%
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5.6 Summary

We have presented in this chapter modeling and pattern extraction tools for microtubule

tracking data which can provide novel insights into molecular mechanisms underlying

the regulation of microtubule dynamics. Specifically, we have investigated the use of

statistical modeling tools and proposed a temporal pattern discovery algorithm. As a

powerful statistical modeling tool, we have modeled microtubule tracks using HMMs.

In addition to agreeing with the manually established findings on microtubule dynam-

ics, the constructed models provide deeper insights into the mechanisms by which dy-

namics occur. The HMM states represent the main modes of growth and shortening

in the microtubule tracks, while the transitions between states provide estimates on the

most frequent dynamic patterns of behavior. We use the constructed models of micro-

tubule behavior for quantifying similarities between different experimental conditions.

We can now look at the full life history plots and infer from them specific patterns

of dynamics by using pattern mining techniques. The extracted rules show the most

frequent patterns of dynamics of microtubules under a specific experimental condition.
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Summary and Future Research

Directions

In this dissertation, we have investigated the use of automated tools to facilitate and

enhance the study of microtubule videos. The analysis of microtubule dynamics has

been mostly manual and limited to simple statistical measures of dynamic parameters.

On the data generation side, we proposed automated microtubule detection and tracking

techniques to speed up, as well as enhance the quality of microtubule tracking data

gathering. In Chapter 3, we proposed an automated technique to extract a band around

the cell periphery, the microtubule layer, through temporal clustering in the frequency

domain. We devised an automated approach to detect microtubules in this layer using a

filtering-based approach to detect the microtubule polymer mass. Microtubule tips are

then estimated and used for automated tracking using a graph-based approach (Chapter
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4). By solving the tracking problem for all microtubules over the full video time extent,

we were able to resolve tracking conflicts and to overcome microtubule tip occlusion

and mis-detection. The technique performs well under noisy and illumination varying

conditions and is reasonably fast.

On the data analysis side, we investigated the use of advanced statistical modeling

and information discovery tools as powerful techniques not previously accessible to

biological studies on microtubules (Chapter 5). We investigated the use of of hidden

Markov models (HMMs) as rich statistical modeling tools to build prototype models for

different experimental conditions. Besides, the built models provide a quantitative mea-

sure of similarity between effects of different test subjects, such as MAPs and drugs,

on microtubule dynamics. Furthermore, we devised a temporal rule mining algorithm

to detect frequent temporal patterns of dynamics for different experimental conditions

providing valuable information to biologists previously unattainable. In the following,

we highlight some of the potential future research directions for the automated analysis

of microtubule dynamics.

6.1 Future Research Directions

6.1.1 Spatial Localization Effects on Microtubule Dynamics

Microtubules do not exist in isolation in cells, and in most cases are surrounded by

other microtubules, as well as as other cellular components. Microtubules depend on
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the available reservoir of soluble tubulin in the cell environment for their dynamics. It

is reasonable to expect that, at an equilibrium stage, if microtubules within a cell re-

gion grow, then this needs to be compensated for by others shortening. This is what

we refer to as neighboring effect. A valuable question to be answered is how to quan-

tify this neighboring effect. It is far from practical to achieve this manually, since a

fair quantification of neighboring effect would necessitate the tracking of all resolvable

microtubules, a time prohibitive task. However, using the automated tracking devel-

oped in this thesis, one can estimate the effect of neighbors for various experimental

conditions.

Another interesting question is to estimate the effect of the distance of the micro-

tubule tip from the cell center on the microtubule dynamics. Again, it is reasonable to

expect that microtubules can behave differently depending on their positions in the cell,

so as to achieve different cellular functions. This is very relevant especially in neuronal

growth cones studies.

6.1.2 Studying the Effect of Different Experimental Conditions on

Microtubule Curviness

It is has been observed that microtubule body curviness varies significantly from one

video to the other and within the same video. An interesting question would be to

measure to what extent is the curviness of a microtubule affected by the spatial loca-

tion within the cell, by the application of a drug or by the presence of a microtubule
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associated protein with a specific concentration and mutation. In this context, neuronal

growth cones microtubules do exhibit shape deformations of microtubule bundles to

direct the growth pattern.

6.1.3 Studying Correlations Between Effects of Drugs and Micro-

tubule Associated Proteins

Microtubule dynamics have been shown to be affected by the presence and concentra-

tion of different drugs and microtubule associated proteins. A potential useful investi-

gation can try to find correlations, if any, existing between say paclitaxel and MAP1B.

The developed statistical tools for modeling and pattern analysis of microtubule dynam-

ics can be extended to study these correlations. An outcome of such analysis can direct

future biological experiments by predicting combined effects of drugs and proteins on

microtubule dynamics.
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Aster

An aster is a radial arrangement of microtubules forming a star shape.

BS-C-1

BS-C-1 are an example of non-pigment cells.

CHO cells

Chinese Hamster Ovary cells.

Cytoplasm

Cytoplasm refers to all the cell components except the nucleus and plasma mem-

brane.

Dimer

A dimer is composed of two monomers [1].

Eukaryotic cells

In Eukaryotic cells, the DNA (deoxyribonucleic acid) is arranged into chromo-

somes contained within the nucleus [14]
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Green Fluorescent Protein (GFP)

This is a fluorescent protein that is coupled to a target protein to serve as a la-

belling technique (GFP fusion). The basic idea behind fluorescent protein la-

belling is to genetically or chemically modify a target protein so that it is fluores-

cent and thus emits light. The light in the case of GFP is green and can be imaged

when excited with a light source of the appropriate wavelength.

Half maximal arrest

At half maximal arrest, half of the number of dividing cells could not proceed

into mitosis and are blocked.

Melanophores

Melanophores are an example of pigment cells.

Monomer

A monomer is a molecule that can join with other molecules to form a large as-

sembly called a polymer. A monomer is the smallest repeating unit in a polymer

chain [2].

Motor proteins

Motor proteins are molecules capable of converting chemical energy into me-

chanical energy allowing them to move along cytoskeleton components such as
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microtubules. This movement facilitates cellular function as vesicle transport and

chromosome separation.

Prokaryotic cells

In prokaryotic cells, the DNA is not separated from the rest of the cell in a nucleus

[14].

Promoter

A promoter is a DNA fragment attached to a target DNA that activates down-

stream transcription.

Protein isotypes

Protein isotypes are different forms of the same protein. For example, β-tubulin

protein isotypes differ primarily in a protein region that lies on the exterior of the

microtubule [38].

Tetracycline

A small antibiotic molecule that is used to induce a promoter to activate DNA

transcription into RNA.

Transcription

The process by which DNA is transformed into RNA.

Transfection
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Transfection is the process by which a foreign DNA is introduced into a mam-

malian cell [3].

Translation

The process by which RNA is transformed into protein.
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