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ABSTRACT

In this paper we study steganalysis, the detection of hidden data. Specifically we focus on detecting data hidden
in grayscale images with spread spectrum hiding. To accomplish this we use a statistical model of images and
estimate the detectability of a few basic spread spectrum methods. To verify the results of these findings, we
create a tool to discriminate between natural “cover” images and “stego” images (containing hidden data) taken
from a diverse database. Existing steganalysis schemes that exploit the spatial memory found in natural images
are particularly effective. Motivated by this, we include inter-pixel dependencies in our model of image pixel
probabilities and use an appropriate statistical measure for the security of a steganography system subject to
optimal hypothesis testing. Using this analysis as a guide, we design a tool for detecting hiding on various
spread spectrum methods. Depending on the method and power of the hidden message, we correctly detect the
presences of hidden data in about 95% of images.
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1. INTRODUCTION

For the past several years spread spectrum (SS) data hiding has enjoyed a wide popularity in the data hiding
community, particularly for watermarking. Additionally SS hiding can be used for covert communication, i.e.
steganography, which inevitably leads to others searching to detect the presence of this secret communication.
In this paper we focus on steganalysis, the detecting of hidden data, in images undergoing spread spectrum data
hiding.

There have been many steganalysis methods put forth over the years.1, 2 For spread spectrum hiding,
Harmsen and Pearlman3 analyze the general case of additive noise modeling, which some varieties of SS can be
modeled as, using statistics across the RGB color planes. Wang and Moulin4 consider additive SS steganalysis
for the case of Gaussian covers. For other schemes or general steganalysis, many have taken approaches that
model images as realizations of random processes, and leverage statistical hypothesis testing theory to characterize
optimal detection limits and design approaches for both detection and evading detection.4–8 Most of these (Wang
and Moulin4 consider general Gaussian random vectors) employ an independent and identically distributed (i.i.d.)
random process for analysis. Images however are known not to be i.i.d., since each pixel is statistically dependent
on its neighbors. Steganalysis methods9–11 that exploit this cover memory well are very effective, suggesting
that statistical models need to include inter-pixel dependencies.

In Section 2 we present our Markov chain image model, statistical analysis of spread spectrum hiding under
this model, and estimations of the detectability of various adaptations of SS hiding. In Section 3, we detail
steganalysis experiments performed on a database of images and present the results. Finally Section 4 summarizes
our conclusions.
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2. SPREAD SPECTRUM HIDING IN CORRELATED DATA

There are many flavors and adaptations of spread spectrum data hiding. However many of these improvements
are designed to increase the robustness from attacks, and the statistical effect is generally the same as the most
basic schemes. We therefore consider the general approach presented by Cox et al,12 of adding a noise-like
message bearing signal to the cover medium. The essence of this technique is straightforward to model. The
hidden message is a pseudo-randomly generated sequence approximating a zero mean, unit variance Gaussian,
N (0, 1). The message sequence is scaled and added to the cover; typically the scaling is proportional to the
cover. The scaling can be performed globally or locally, i.e. the scale factor can be the same for all coefficients
or vary as a function of the cover coefficient.

In addition to choosing between a globally and locally adaptive scheme, a hider can choose to embed directly
in the spatial domain or in a transform space such as the DFT or DCT. We however concentrate our steganalysis
on the spatial domain for a number of reasons:

• The transform of a Gaussian message sequence with linear transforms such as DCT and DFT is also
Gaussian, and by the superposition property of these transforms, adding a Gaussian signal in the frequency
domain is equivalent to adding in the spatial domain. This does not mean that spread spectrum data hiding
in the transform domain is exactly equivalent to hiding in intensity values, because of the effect of rounding
and clipping. However we have observed that in practice the deviation is small.

• The sample space of spatial domain values is small and static. In practical terms, the pixel values are
fixed bit-depth integers, whereas the transform coefficients are floating point values. There are a number
of difficulties that arise when estimating the distribution of floating point values that do not exist with a
small set of integers.

• Spatial analysis is generic. We can use the same general framework, and fine tune to specific scheme
differences at the final stage.

Finally, we concentrate on intensity (gray-value) images; typically using 8-bit images though any bit-depth can
be used with this approach. We point out that we examine the correlation between pixels in the intensity plane,
ignoring the relationship across color planes. An advantage of this approach is that most SS hiding schemes are
designed for hiding in gray-scale images, and correlation is known to be strong in the intensity plane. If, however,
hiding is done across all color planes, important information for detection3 is ignored. In the future we plan the
straightforward extension of incorporating color plane correlation information with inter-pixel correlation.

2.1. Judging Detectability in Correlated Data

In the context of independent and identically distributed (i.i.d) data, Cachin5 suggested the Kullback-Leibler
(K-L) divergence, also known as relative entropy, between the cover and stego distributions as a benchmark
for the detectability of a steganography system. Image cover data however is not i.i.d. We can abandon the
i.i.d. assumption, however this raises the question of an appropriate benchmark. For the i.i.d. case, the error
probabilities for an ideal hypothesis test decrease exponentially as the K-L divergence increases,13 and for zero
K-L divergence an ideal hypothesis test can do no better than random guessing. An appropriate benchmark
for correlated data should have the same property. If we model the cover data as a Markov chain14 to capture
inter-dependence, then such a function exists.15 The function is essentially a distance between the empirical
matrices of the two hypotheses: cover and stego. The empirical matrix of a Markov chain realization is comprised
of the counts of the numbers of transitions from one state to another. So for a received vector of pixel values,
y = (y1, y2, . . . , yn), if we let nij(y) be the number of transitions from value i to value j in y, we have the
empirical matrix M(y) = (nij(y)/n). Here the empirical matrix (or co-occurrence matrix) can be viewed as
an estimate of the joint probability mass function (PMF), and we will generally view it as such. We use the
following divergence function between two empirical matrices P and Q:

D(P,Q) =
∑
i,j

pij log

(
pij∑
j pij

∑
j qij

qij

)



For a constant false alarm rate, the minimal achievable missed detection rate approaches e−nD(P,Q) as n, the
number of samples, goes to infinity,15 just as in the i.i.d. case with K-L divergence. That is, under the assumption
of a Markov chain model, the performance of any possible detector is exponentially bounded by this measure.
We have then a measure of the information gained from one sample of a Markov chain. We can use this value
to compare the detectability of SS hiding in a Markov chains of varying parameters. We can also compare with
a steganalyzer assuming i.i.d. data, to evaluate if the increased complexity of a detector assuming correlations is
worthwhile.

2.2. Statistical Effect of Spread Spectrum Hiding

For globally adaptive hiding, the same scale factor is used for all coefficients, so the function to embed a zero
mean, unit variance, Gaussian message signal D into the cover medium X is Sk = Xk + αDk where S is the
resulting stego sequence and α is the scaling factor. This is essentially the method used by Marvel, Boncelet,
and Retter in spread spectrum image steganography (SSIS).16 The additive “noise” is ∼ N (0, α2). The effect
is additive and the statistical effect is a convolution of the message and cover distributions.3 The consequence
of this convolution is easily seen in the joint PMFs, see Figure 1

Message Empirical Matrix

−10 0 10

−10

0

10

Cover Empirical Matrix

50 100 150 200 250

50

100

150

200

250

Stego Empirical Matrix

50 100 150 200 250

50

100

150

200

250

Figure 1. These plots show the empirical matrix of the cover, message, and stego. Black represents a large number of
transitions, white represents few or none. Additive hiding convolves a white Gaussian message with the cover, weakening
the dependencies in the cover image, seen as a spreading from the main diagonal.

The spread away from the center line means the probability of two consecutive coefficients having the same or
close values decreases. Intuitively, by adding independent message data, the cover data becomes less dependent.

For locally adaptive hiding, the embedding function is Sk = Xk +αXkDk. This additive description however
defines the effect of hiding as a function of the cover samples, Xk. To avoid this we can alternatively view the
hiding as multiplying Xk by the random variable B = (1 + αDk) ∼ N (1, α2).

The joint distribution of the resulting unquantized stego variables S′ is
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For a given cover probability mass function (PMF), P (x1, x2), these expressions can be evaluated numerically.
Here we have assumed that the probability density function f(b1) = f(b2) is essentially Gaussian, but with zero
probability at values less than or equal to zero. This assumption is warranted by the typical α values used in
hiding, which are chosen small enough to avoid visual distortion to images. To fit standard image formats, the
S′ are rounded and clipped to become S. After rounding, the PMF is

P (s1, s2) =
∫ s1+.5

s1−.5

∫ s2+.5

s2−.5

fS′
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2
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′
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To clip the values to fit within [0,255], we can simply not embed in those coefficients, i.e. the clipping process is:

S =
{

Q(S′) Q(S′) ∈ [0, 255]
X else

Where Q(·) is a rounding function. This slightly reduces the actual strength of hiding, making the task of
steganalysis more difficult, but typically the effect is negligible.

The net statistical result of the hiding process is not obvious from the equations, however as seen in Figure
2 the consequence of hiding is again a “spreading” of probability away from the center line. However the effect
is less strong. For locally adaptive hiding, if we view the embedding as additive noise, the white Gaussian noise
is colored by scaling with the cover. We would then expect the de-correlating effect to be less pronounced then
adding white noise. This intuition is borne out by measurements in the following section.

Cover Empirical Matrix (zoomed)

150 160 170 180 190 200

150

160

170

180

190

200

Stego Empirical Matrix

150 160 170 180 190 200

150

160

170

180

190

200

Cover−>Stego Increase

150 160 170 180 190 200

150

160

170

180

190

200

Cover−>Stego Decrease

150 160 170 180 190 200

150

160

170

180

190

200

Cover Empirical Matrix (zoomed)

150 160 170 180 190 200

150

160

170

180

190

200

Stego Empirical Matrix

150 160 170 180 190 200

150

160

170

180

190

200

Cover−>Stego Increase

150 160 170 180 190 200

150

160

170

180

190

200

Cover−>Stego Decrease

150 160 170 180 190 200

150

160

170

180

190

200

Figure 2. Though both global (left) and local (right) adaptive schemes weaken the dependencies in the host, the effect of
the locally adaptive scheme is less pronounced. That is, both decrease the number of transitions near the main diagonal
(where dependency is strong) while increasing away from the main diagnoal, however the magnitude of change is less with
locally adaptive hiding.

2.3. Measuring Detectability of Hiding

For a given cover joint PMF, we know the effect of data hiding. However, cover statistics change from image
to image. To analyze the detectability of spread spectrum hiding on images, we analyze statistics taken from a
variety of real images. Random message data is hidden into synthetic cover data generated from these real cover
statistics, and the resulting K-L divergence is measured. Over several images, an estimate of the divergence
introduced by SS hiding can be found.

We examine global and local adapting schemes embedded into both the spatial domain and DCT domain.
Two of these four cases correspond to tests run by others: SSIS16 is a globally adaptive spatial embedding scheme



and Cox et al12 use a locally adaptive DCT scheme in their experiments. We added SS data over a range of
different message to cover ratios (MCR), to quantify the important effect of message power. For the globally
adaptive scheme we can hold the MCR constant and adjust the total message power for each image. In the
adaptive scheme, we hold the scale factor α constant. In this case MCR varies from image to image; we note the
average value along with the divergences. Using a non-i.i.d. model adds complexity to the detector. To verify
that this added complexity yields an increase in detection rates, we compare the normalized one-dimensional
histogram divergence to the empirical matrix divergence.

In Table 1 and Table 2 we show the different divergences of empirical matrices (labeled 2-d div.) averaged
over many images for a range of embedding powers. To show the gain in accounting for correlation, we show
the average K-L divergence of the one-dimensional normalized histograms (labeled 1-d div.). The greater the
divergence, the better an ideal detector will perform. These findings imply that SS hiding is indeed detectable if
the detector has the several hundred samples available in image data. We note that in this ideal case, the cover
statistics are assumed to be known, which is not the case in a realistic scenario.

Globally adaptive, Spatial
MCR -23 -20 -17

Mean 2-d div. 39.78 52.12 64.69
Mean 1-d div. 3.438 4.553 5.472
Mean ratio 20.45 20.23 20.27

Globally adaptive, DCT
MCR -23 -20 -17

Mean 2-d div. 40.14 52.22 64.52
Mean 1-d div. 3.514 4.395 5.526
Mean ratio 20.31 20.20 20.14

Table 1. Divergences for globally adaptive hiding in two domains, all divergence values are ×10−2. As expected the
divergence, and thus detectability, increases with added message power. Additionally there is a gain to examining the
cover dependencies, as indicated by the greater divergence per sample. For example, in both cases at MCR = -20 dB, the
divergence considering correlation is about 20.2 times greater than assuming i.i.d. data. This means 95% fewer samples
are required to achieve the same detection results.

Locally adaptive, Spatial
Alpha 0.05 0.1 0.5

Mean MCR -20.34 -14.63 -3.17
Mean 2-d div. 40.14 56.12 93.22
Mean 1-d div. 2.514 4.188 12.25
Mean ratio 26.06 22.32 9.613

Locally adaptive, DCT
Alpha 0.05 0.1 0.5

Mean MCR -26.07 -20.23 -7.205
Mean 2-d div. 2.649 3.897 14.69
Mean 1-d div. 2.499 4.344 9.735
Mean ratio 2.997 2.151 2.433

Table 2. Divergence values for locally adaptive hiding (again ×10−2). As expected from the intuition mentioned above,
locally adaptive hiding introduces less divergence (for equal MCR) between cover and stego. Also, because the added
message is a function of the cover medium, the locally adaptive divergence depends on the domain of embedding.

These findings motivate further pursuit of SS steganalysis, since theoretically, detection is possible. In the next
section we present experiments performed on real image data, in which the statistics are not known beforehand.

3. DETECTION EXPERIMENTS
If we know the cover statistics, we can calculate the stego statistics and use a likelihood ratio test17 to classify
any unknown image as either cover or stego. For the realistic blind case, we do not know the cover statistics. We
have several options. We can attempt to estimate the cover statistics from the received data. A problem with
this, especially with model fitting estimates, is that the estimation may be too coarse, resulting in an estimate
that is further from the cover than even the stego. It is in general difficult to find an estimation function that will
return cover statistics from both stego data and cover data. Another approach is to attempt to classify between
all possible cover and stego images. Specifically, a learning system can be trained on both cover and stego
images, to learn to discriminate between the two. Learning has been successfully used for steganalysis3, 18–20

and Martin et al21 have shown many methods of steganography to be “unnatural.” We employ this approach to
detect spread spectrum hiding.



3.1. Test Details

3.1.1. Hiding Parameters

We test the detection of the varieties of spread spectrum hiding examined in Section 2, a globally adaptive
spatial domain scheme as in Marvel et al’s SSIS,16 a locally adaptive DCT-domain scheme as in Cox et al’s
experiments,12 as well as a locally adaptive spatial scheme and a globally adaptive DCT scheme. For SSIS, we
used a constant message to cover ratio (MCR) of -23 dB. This is just below the minimum hiding power reported
by Marvel et al, so we chose this as a worst-case for detection. For the adaptive DCT tests, we had a constant
α of 0.1, the same as the experiments reported in the paper. We found the mean MCR hiding with this α to
be -20.71 dB. For the locally adaptive spatial scheme we choose an α that tended to have a similar mean MCR.
Finally for the globally adaptive DCT scheme, we also used a constant MCR of -23. Unfortunately it is difficult
to state the effective hiding rate in bits per pixel (bpp) for these tests. SSIS uses image restoration, varying
message power, and error correction codes to overcome the noise due to the cover in decoding the data. The
reported payload is therefore different from image to image. The maximum payload reported is 0.1667 bpp, so
we estimate that the effective hiding rate of our test images is less than or equal to this. Cox et al present their
hiding method as a watermarking application, which is effectively one bit per image, though more data than this
could almost certainly be sent with the method.

3.1.2. Classifier

As a classifier, we use Joachim’s support vector machine (SVM) implementation,22 SVMlight. The machine is
trained on roughly 700 images and the same amount is used for testing. Each set, training and testing, consists
of half cover images and half (distinct) stego images. A linear kernel is used; we found other kernels perform
only slightly differently.

3.1.3. Image Database

In an attempt to capture the variance of real world images, we use images from a database comprised of four
separate sources:

1. digital camera images, partitioned into smaller sub-images

2. scanned photographs

3. scanned, downsampled, and cropped photographs

4. images from the Corel volume Scenic Sites

All images are converted losslessly to PNG format and color images are converted to grayscale.

3.1.4. Feature Vector

We use a learning machine as a substitute for a likelihood ratio test, to attempt to learn unknown statistics.
Therefore we should choose the empirical matrices, or joint PMFs, as the feature to learn. However this would
result in an enormous feature vector. For example, an 8-bit image has 256 values, so the joint PMF has 65,636
features. To reduce this to a more manageable size, we first observe that these matrices are very sparse, because
it is very rare to have a large jump in values from one pixel to another. We can ignore regions that have zero
or very low probabilities of occurring. Additionally, we noted in Section 2.2 that hiding tends to spread values
away from the main diagonal. To concentrate on this effect we examine the region immediately surrounding the
main diagonal, specifically high probability regions where changes are greater in magnitude. With this in mind,
first the 6 highest probabilities on the main diagonal (P (x1 = m,x2 = m)) are chosen, and for each of these the
following 10 nearest differences are picked:

{P (x1 = m,x2 = m), P (x1 = m,x2 = m− 1), P (x1 = m,x2 = m− 2), . . . , P (x1 = m,x2 = m− 10)}



All together this gives a 66-dimensional vector. We wish to also capture changes along the center line. To do
this we subsample the remaining main diagonal values by four:

{P (x1 = 1, x2 = 1), P (x1 = 5, x2 = 5), P (x1 = 9, x2 = 9), . . . , P (x1 = 253, x2 = 253)}

The resulting total feature vector is 129-dimensional, a manageable size that still captures much of the hiding
effect. An example of the feature vector before and after hiding is shown in Figure 3. For comparison to tests
on first-order statistics, the histogram of the image under the same hiding is shown.
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Figure 3. The feature vector (left) of an image changes dramatically after hiding, whereas the histogram (right) hardly
changes.

3.2. Results
We summarize the results for globally adaptive hiding in Table 3 and locally adaptive hiding in Table 4. We
include both the detection benchmarks: probability of false alarm and probability of missed detection, and
learning benchmarks: recall and precision, for convenience. Here globally adaptive schemes are much more
susceptible to detection than locally adaptive schemes, and it seems a wise steganographer would exclusively use
a locally adaptive technique. However there are a couple of important points to mention:

• Despite an attempt to calibrate the tests by maintaining a benchmark, the message to cover power ratio
(MCR), throughout all the tests, there is much more variance in this measure for locally adaptive hiding
than globally adaptive hiding. Globally adaptive hiding by definition matches the MCR (with a nominal
error due to rounding and clipping), whereas locally adaptive hiding can only choose α such that the chosen
MCR is achieved on average. The variance from image to image certainly contributes to the difficulties the
classifier has in discriminating between clean and stego.

• Ideally the tests would be calibrated to the same message hiding rate, bits per pixel. However it is not
necessarily clear that MCR is directly related to the hiding rate. We note that for SSIS, Marvel et al used
the very fact that the image could be restored, that is, the message removed, to recover the hidden data.
This would certainly be more difficult, if not impossible, with locally adaptive hiding. Indeed, their hiding
rate decreased in highly textured images. In these images the cover dependencies are less strong, so the
cover statistics are closer to the message statistics, just as in locally adaptive hiding.

Recalling Section 2.3, the divergences for both DCT and spatial hiding are similar and large. Spatial, locally
adaptive divergence is smaller, and DCT, locally adaptive is much smaller. The results of our SVM tests follow



Globally adaptive, spatial (SSIS)
Pr(false alarm) 0.027

Pr(missed detection) 0.017
Recall 0.982

Precision 0.974

Globally adaptive, DCT
Pr(false alarm) 0.050

Pr(missed detection) 0.006
Recall 0.994

Precision 0.952

Table 3. Globally adaptive hiding, whether in spatial or DCT domain, is properly detected about 95% of the time.

Locally adaptive, Spatial
Pr(false alarm) 0.118

Pr(missed detection) 0.015
Recall 0.985

Precision 0.893

Locally adaptive, DCT (Cox experiments)
Pr(false alarm) 0.284

Pr(missed detection) 0.107
Recall 0.893

Precision 0.759

Table 4. As suggested by the Markov random chain tests, locally adaptive hiding is more difficult for a steganalyzer to
detect, though spatial is easier than DCT. However, though the average message to cover power ratio is slightly greater
than the global hiding tests, it is not clear if this means a similar amount of data can be hidden.

these divergences. That is, the divergence measures on Markov random chains match the relative detectablities
of these tests, reinforcing the idea of the divergence as a benchmark. We do however note that our SVM tests
are not optimal, and an optimal detector may deviate from these findings.

We note that our results detecting SSIS are very near to Harmsen and Pearlman,3 despite using different
information. I.e. we look at neighboring pixels in the intensity plane, and they look at the same pixel across
different color planes. RGB planes are certainly not independent, so this similarity is not surprising.

4. CONCLUSION

We have examined the use of dependency information for the detection of spread spectrum data hiding in
grayscale images. A Markov random chain was used to model the correlation between pixels in an image. A
detection-theoretic benchmark was used to find the detectability of a few simple methods of spread spectrum
hiding in Markov chains, and so to estimate the vulnerability of such hiding to steganalysis. Additionally a gain
is found to including dependency information in detection.

To compare the findings for Markov random chains to detection of real image data, we used a supervised
learning machine to classify between cover and stego images. The learning machine was trained on a subset of
the estimated distributions of a diverse database of images. For detecting SSIS and a similar DCT embedder, the
learning machine is able to correctly detect the presence of hidden data about 95% of the time. The performance
on other spread spectrum variants is not as powerful, however this is expected from the divergence measured on
Markov chains.

This framework can be used to estimate the detectability of other data hiding methods in correlated data,
and to design methods of detection. Additionally, more orders of dependence can be modeled. For example,
Markov random fields23 of all neighboring pixels are often used in image modeling. Though this quickly increases
the complexity, it may more closely match real images.

Whatever model is used for steganalysis, there is no doubt that dependencies aid detection. We note that
with some exceptions,24 most steganographers do not consider these dependencies, greatly increasing the risk
of detection.
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