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Abstract

Our contribution in this paper is two-fold. First, we ex-
tend our previous curve evolution method based on pair-
wise similarities. This curve evolution equation com-
bines the grouping abilities of active contours and graph
partitioning techniques. Connections of our method to
spectral graph partitioning are investigated and compar-
isons are made. Second, in a model-based segmentation
scenario, we propose a method to improve segmentation
quality by iteratively modifying the model using feed-
back from segmentation of a labeled training set. Our
purpose here is to segment objects in geo-spatial images
by integrating domain knowledge with the segmentation
method. We achieve our goal by combining a statisti-
cal model for the object with a knowledge-guided seg-
mentation method. Experimental results show that this
framework is effective for model-based segmentation of
complex geo-spatial objects.

1. Introduction

In the last ten years, two methods in perceptual group-
ing and image segmentation became increasingly popu-
lar, namely active contour methods (ACM) [1, 2, 3, 4, 5]
and graph partitioning methods (GPM) [6, 7, 8, 9, 10].
ACM have the nice ability of grouping both curve
(line) processes [11] and regions (points) [2] concur-
rently while staying a closed contour in the process.
Although powerful, this perceptual grouping aspect of
active contours is not very well investigated in the lit-
erature.

To the best of our knowledge, past region-based
ACM methods segmented images either by modeling
them as piecewise constant [2], piecewise smooth func-
tions [4], by maximizing separation of the mean or vari-
ance of neighboring regions [5], or by clustering the
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histogram first to estimate region statistics offline and
then tuning the ACM to these statistics [3]. All these
methods are based on simple statistics of unknown re-
gions and require a priori assumptions. In this pa-
per, we are demonstrating a region-based ACM that
uses pairwise similarities. We will show connections
and comparisons to various GPM. For example, the
analogous energy functional of the minimum cut crite-
ria of GPM can be written in continuous domain as:
E =

∫
Ri(C)

∫
Ro(C)

w(p1, p2)dp1dp2, where Ri and Ro

are the interior and the exterior of a closed curve, and
w(p1, p2) is a similarity measure.

There are several advantages of ACM compared to
spectral GPM. 1) The energy functional is defined and
solved in the continuous domain. 2) Edge information
can be directly integrated to the energy functional or
the evolving partial differential equations (PDE). We
will discuss more about this in conclusion. 3) The evo-
lution of curves gives direct visible feedback about the
evolution of the partitioning. Monitoring GPM meth-
ods is also possible through eigenvector computations,
but this is not as direct as in ACM. 4) Multiple curves
can be coupled and affect each other during evolution.
On the other hand, the advantage of spectral GPM
is that they search for an approximate global mini-
mizer as opposed to the steepest descent method used
in ACM. Even though a local minimization method is
used, region-based ACM utilize regional features cal-
culated on the whole image as opposed to edge-based
ACM, where an edge function is generated by local fil-
tering. Local minimization of region-based ACM gets
close to the global minimum if the initial curves cover
most of the image domain. For practical purposes, ini-
tializing a multi-part curve in a uniform grid over the
image domain (Figure 3(c)) leads to an approximate
global minimum.

In this paper, we propose a knowledge-based seg-
mentation method and more specifically we choose our
domain of interest to be geo-spatial objects (Figure
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2(a)). The term geo-spatial applies in general to any
spatial geographic data, e.g. aerial imagery. Segmen-
tation in geo-spatial domain is challenging because of
the following reasons: 1) wide variation in visual ap-
pearance within the object or, alternatively, lack of ho-
mogeneity with respect to low-level features (e.g. a golf
course can have varying tree density and distribution)
resulting in edges inside the object that confuse the
segmentation algorithm, 2) lack of well-defined struc-
tural constraints that would aid the modeling process,
unlike objects such as faces (where the location of eyes,
nose, etc. can be defined relative to one another), and
3) lack of well-defined boundaries. For the above rea-
sons, geo-spatial objects cannot be effectively modeled
using traditional shape-based or contour-based tech-
niques. We characterize such complex objects using
multi-dimensional statistical models (Section 3).

We want to clarify our view of knowledge-based seg-
mentation. We would like to use domain knowledge to
help improve the segmentation process. This is differ-
ent from object recognition or template matching be-
cause segmentation neither attempts to extract specific
objects from the image nor is it aware of the seman-
tics of these objects. The domain knowledge is utilized
for example to increase homogeneity within the objects
and strengthen the edge and boundaries between them.
This can be achieved by adaptively modifying simi-
larity measures utilized by the segmentation method.
This knowledge-based segmentation result is then sep-
arately interpreted for object semantics.

Another important contribution of this paper is the
model tailoring process. This stage is important be-
cause the model learning process is often imperfect. If
the initial model is used for knowledge-based segmen-
tation, the results are often unsatisfactory. In order to
improve segmentation quality, the initial model is iter-
atively modified using feedback from the segmentation
of labeled training images.

This paper is organized as follows. In Section 2,
some related research efforts are presented. Section 3
briefly describes the statistical model that is used for
representing geo-spatial objects. Section 4 describes
the process of iteratively modifying the model to im-
prove segmentation based on feedback. In Section
5, the details of the knowledge-guided segmentation
method are discussed. Experimental results are pre-
sented in Section 6 and conclusions in Section 7.

2. Related work

There is a large number of papers on knowledge-based
segmentation because of the generic meaning of this
term and wide applicability of segmentation in many
domains. In many cases, generic segmentation algo-

rithms do not work as well as required, so integration of
domain knowledge becomes crucial. It is not possible to
review all the literature here due to space restrictions.
Most of the papers in knowledge-based segmentation
target medical image processing. The majority of such
papers are published in IEEE Transactions on Medical
Imaging. Examples from other domains are: SAR im-
age segmentation using statistical methods [12], rule-
based segmentation of document images [13], and seg-
mentation of individuals in crowded situations using
human shape models [14].

Several papers have dealt with the automatic analy-
sis and interpretation of geo-spatial data. Knowledge-
based systems have been put forth time and again
for achieving various goals. We will only mention a
few examples here. Yu et. al. [15] detect urban ar-
eas in satellite images using map knowledge through
an MRF model. An iterative labeling scheme is used
to increase robustness. Smits et. al. [16] update land-
cover maps through knowledge-based segmentation of
high-resolution imagery using an MRF model and tex-
ture features. Ton et. al. [17] segment Landsat im-
ages into various land-cover types using both spectral
and spatial information in combination with a hier-
archical classifier. Barzohar et. al. [18] use geometric-
probabilistic models for road detection. Regarding geo-
spatial objects, researchers have worked on the detec-
tion of structured objects such as buildings [19, 20],
or the rule-based interpretation of selected objects [21]
(like airports) using several construction rules. More
recent work [22] addressed the problem of localizing
geo-spatial objects using bounding boxes, given their
approximate location.

3. Geo-spatial object modeling

We model a given geo-spatial object class by statisti-
cally learning [23, 24] the multiple textures that charac-
terize the class. This model captures the wide variation
of visual features within the class. The choice of image
texture as the visual feature is justifiable because many
geographic processes (e.g. agricultural fields, parking
lots, etc.), that result in object formation, can be ef-
fectively characterized by it. We use a 30-dimensional
texture feature formed by sliding window averages of
outputs of Gabor filters [25] at 5 scales and 6 orienta-
tions (at 30◦ intervals).

These features are sensitive to the orientation of the
texture (and therefore the object). A 30◦ rotation of
the texture is equivalent to a circular shifting of the
feature vector components at each scale. To achieve
rotation invariance, we construct a Gaussian mixture
model [24] that learns the equivalence between different
versions of feature vectors caused by rotation.
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Figure 1: Possible errors during object segmentation.

The conditional probability of a feature vector x,
given that it is generated from cluster j and its orien-
tation index is r, is written as

p (x|j, r) =
exp

h
− 1

2
(xr − �j)

T P−1
j (xr − �j)

i
(2π)d/2

���Pj

���1/2
. (1)

The term xr is the vector x circularly shifted by r
orientations where r ∈ {1, .., R} (R = 6 here). Note
that the orientation r is with respect to the normalized
orientation of the mixture component. The pdf of the
feature distribution in an object class is modeled as a
J-component Gaussian Mixture Model (GMM)

p (x) =
1

R

RX
r=1

JX
j=1

p (x|j, r) P (j), (2)

where we have assumed that the orientation r is in-
dependent of j and equiprobable (in the absence of a
priori information). This model is completely specified
by the parameters Θ = {(P (j) , µj , Σj) ; j = 1 . . . J}.

A modified version of the expectation-maximization
(EM) algorithm [26] is used to estimate the parameters
of the GMM. Rotation is taken into account by modi-
fying the EM algorithm to include the orientation r of
the feature vector as additional missing data.

4. Tailoring the object model

We train an initial model using a large number of tex-
ture samples randomly drawn from several example im-
ages of a given object. The training samples are drawn
only from the interior of the object, specified by a hand-
drawn binary mask (for each training image). Several
approaches exist (e.g. [27]) to find the best model with

respect to various cost functions. In our case, the cri-
terion to optimize is segmentation quality.

We train the initial model using a fixed number of
Gaussians. Our goal is to tailor this model to achieve
the desired quality of segmentation. We attempt to
achieve this goal by iteratively modifying the model
using feedback from the segmentation of labeled train-
ing images.

Consider a situation as shown in Figure 1, which
could occur after segmentation using the initial model.
Regions A lie inside the desired segmentation (object)
contour but lie outside the current segmentation con-
tour. We term these the missed regions. Regions B do
not belong to the object but lie within the current seg-
mentation contour. We term these the false-positive
regions. Region C is the correctly segmented region.
In order to achieve the desired segmentation, we need
to bring regions A inside the contour and eliminate
regions B. We do this by modifying the model appro-
priately.

For model modification, we apply ideas loosely
drawn from [28]. In the case of a missed region, we
modify the model by adding a Gaussian. The mean
and covariance matrix of this Gaussian is initialized
using texture samples from the corresponding missed
region. Its prior is set to 1/K, where K is the num-
ber of Gaussians in the model (including the new one).
The priors are then normalized to have unit sum. The
model is then smoothed by running N (say, 5) itera-
tions of EM.

False-positive regions are handled in the following
manner. First, we define the marginal contribution of
a Gaussian j to the average probability of region S,

m (S, j) =
1

|S|
X
x∈S

1

p(x)

 
1

R

RX
r=1

p (x|j, r) P (j)

!
, (3)

where |S| is the number of points in region S. Then
we calculate the ratio of the marginal contributions of
each Gaussian to regions A ∪ C and B, i.e. md(j) =
m(A ∪ C, j)/m(B, j). Each prior P (j) of the model is
scaled by md(j), followed by normalization of priors.
This emphasizes the Gaussians that favor the object re-
gion A∪C and undermines those that favor B. During
this process, if a prior goes below a threshold value, the
corresponding Gaussian is removed and the remaining
priors renormalized.

The TailorModel algorithm for tailoring the
model is as follows:

1. Train the initial model M0 with K0 Gaussians.
Set time t = 0.

2. Initialize the segmentation curve. In our experi-
ments, a uniform grid of curves is used as shown
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in Figure 3(c).

3. Using model Mt at time t, segment the labeled
training images into object and background (Sec-
tion 5). The segmentation is initiated from the
curve at the previous iteration.

4. If the desired quality of segmentation is obtained,
terminate the algorithm. Otherwise, go to the
next step.

5. Select a missed or false-positive region depending
on which is larger. Modify the model using the
procedures described earlier. Set t = t + 1. Go to
step 3.

5. Image segmentation

We previously suggested [29] an energy functional that
utilizes pairwise dissimilarities for optimal partitioning
of the image. We showed preliminary results within the
application of curve evolution for both bi-partitioning
and multi-region segmentation [30]. In this section we
expand our previous theory. Novelties of this section
are: we show the derivation of the descent functions,
adapt and compare our formulation to GPM, and dis-
cuss ways of fixing the shortcomings of minimum-cut
criteria.

Within GPM, minimum cut segmentation [31] mod-
els the pixels of the image as nodes of a graph.
The partitioning of this graph (segmentation) is
based on finding the minimum cut: cut(Ri, Ro) =∑

p1εRi,p2εRo
w(p1, p2). In [6], the similarity matrix is

selected as e
−‖F (p1)−F (p2)‖

σI (excluding the spatial term),
where F is an image feature such as gray scale inten-
sity. As we discussed in Section 1, minimum cut crite-
ria can be written as an energy functional in continuous
domain formulated as a partitioning of the image with
a curve, as opposed to a graph cut. One conceptual
difference with this approach is that the partitions of
ACM are not necessarily connected components, which
is usually enforced as a constraint in GPM. A curve
can split into multiple parts during its evolution. The
energy functional we would like to minimize is then
written as:

E =

ZZ
Ri(C)

ZZ
Ro(C)

w(p1, p2)dp1dp2 (4)

where C is a curve and Ri and Ro are the interior
and the exterior of this curve. We solve this mini-
mization problem using steepest descent method where
we instantiate a curve and evolve this curve towards
the minimum. First, we calculate the first variation of

(4). It can be shown that the first variation of M =∫∫
Ri(C)

G(p, t)dp is:

∂M

∂t
=

I
C(t)

D
Ct, G ~N

E
ds +

ZZ
Ri(C)

∂G(p, t)

∂t
dp (5)

If we take G(p2, t) =
∫∫

Ro(C)
w(p1, p2)dp1, then M =

E. w(p1, p2) is not a function of t, so ∂G/∂t =
− ∮

C(t)

〈
Ct, w ~N

〉
. When integrating on Ro, the nor-

mal vector is in the opposite direction, hence the mi-
nus sign. By combining these formulas, we see that, E
decreases most rapidly when:

∂C

∂t
=

 ZZ
Ri(C)

w(p, c)dp−
ZZ

Ro(C)

w(p, c)dp

!
~N (6)

where c is a point on the curve and ~N is the outward
normal vector. Suppose the image consists of a fore-
ground object and a background. If the curve point c
is within the foreground, then the first term is high and
the curve will expand in the normal direction towards
the boundary between background and foreground. If
the curve is located on the background, the second term
is higher and this will shrink the curve again towards
the boundary.

As discussed in [6], one problem with the mini-
mum cut criterion is that it favors cutting small par-
titions. This is because for small partitions, the total
sum across the cut is also small. Normalized cuts [6]
then suggest a normalization procedure to solve this
shortcoming. We approach this problem from a dif-
ferent direction. Instead of defining a similarity mea-
sure, we define w as a dissimilarity measure, such that
w(p1, p2) = ‖F (p1)−F (p2)‖. So instead of minimizing
an energy functional, we maximize one. The advan-
tage of this approach is that using a dissimilarity mea-
sure actually encourages equal size partitions because
E is maximized if there are high number of connections
across the cut. This follows a behavior similar to nor-
malized cuts framework. Even though our approach
is different from normalized cuts, there is some paral-
lelism between them. To clarify this reasoning, let us
define a measure for intra-region similarity:

E2 =

ZZ
Ri

ZZ
Ri

w(p1, p2)dp1dp2 +

ZZ
Ro

ZZ
Ro

w(p1, p2)dp1dp2

(7)

The steepest descent solution for maximizing −E2

(intra-region similarity) is exactly the same as maxi-
mizing E (inter-region dissimilarity). This is not sur-
prising since E2 =

∫∫
R

∫∫
R

w(p1, p2)dp1dp2 − 2E =
C−2E, where R = Ri∪Ro and C is a constant. So, us-
ing a dissimilarity measure encourages similarity within

4



the partitions while discouraging inter-region similar-
ity (A parallel argument is made for normalized cuts
based on the region associations).

So far, we have solved a minimum cut problem
within the curve evolution framework and introduced
a dissimilarity measure to address the shortcomings of
minimum cut. Other graph partitioning criteria such
as minimizing the average cut or normalized cut can
also be formulated using energy functionals. We plan
to discuss these solutions and their comparisons in our
future work.

6. Experiments

The object of interest in our experiments is golf course.
Given an arbitrary image, we would like to segment
out the region corresponding to a golf course if the
image contains one. We use aerial images that are typ-
ically larger than 1000 × 1000 pixels. Figure 2 shows
the training set of 5 images, along with hand-drawn
boundaries indicating the golf-course regions. Texture
features (Section 3) are extracted from a 64×64 neigh-
borhood of each pixel in these images. The neighbor-
hood size is chosen according to the size of the image
and the scale of relevant textures within. In order to re-
duce computational complexity, the features to be used
for training are obtained by random sampling from the
object regions. Using this data, an initial model (with
10 Gaussian components) is trained.

Our segmentation cost function is as given in (4).
However, instead of using a similarity function as
in minimum cut framework, we utilize a dissimilar-
ity measure to discourage partitioning of very small
regions. To adapt the segmentation to the domain
knowledge, we utilize the model probabilities calcu-
lated using (2). The dissimilarity measure becomes
w(s1, s2) = ‖p(s1) − p(s2)‖. Pixels with closer prob-
abilities are grouped together. Note that a homoge-
nous region with all low probabilities is indistinguish-
able from one with all high probabilities. The inter-
pretation of these regions is a separate process. For
the purpose of grouping regions together, we also in-
troduce a geometric curvature term (constraint) to the
curve evolution, which smooths the curve and favors
smaller curve lengths, which in turn discourages very
small or noisy regions. The final curve evolution equa-
tion for segmentation becomes:

∂C

∂t
=

 ZZ
Ro(C)

w(s, c)ds−
ZZ

Ri(C)

w(s, c)ds

!
~N − γκ ~N

(8)

Figure 3(a) shows the test image with the desired
segmentation superimposed. Figure 3(b) shows the
probabilities of each pixel being generated by the “golf

course” model. Figure 3(c) shows the uniform grid of
curves used to initialize the segmentation process. Fig-
ure 3(d) shows the segmentation result using this prob-
ability field. We can see that the segmentation method
is confused by background regions whose pixels have
similar (albeit low) probabilities. This problem can
be mitigated by setting probabilities below a certain
threshold (= 0.9 here) to zero and all others to one.
Figure 3(e) shows the segmentation result using the
thresholded probability field. In future, we intend to
perform an N -region segmentation as opposed to bipar-
titioning. This gives us more flexibity in interpreting
the results.

Consider the segmentation result at some time t1
(Figure 4(a)). While the object is correctly identified,
there is still a missed region. Figure 4(b) shows the re-
sult at time t1+1 after one iteration of TailorModel,
where a Gaussian is added to the model to include the
missed region. Figure 4(c) shows the result at some
time t2. Figure 4(d) shows the result at time t2 + 1
after one iteration for shrinking some false positive re-
gions. The improvement in this case is marginal since
the handling of false-positive regions is less drastic than
that of missed regions.

Note that a band of 32 pixels (half the texture neigh-
borhood size) at the image borders is removed before
segmentation. This is done to avoid the edge effects of
texture feature computation. Then the image of prob-
abilities is down sampled to the 200× 200 range. This
is done for efficient implementation. While the curve
evolution (8) is run on this image, the integrals are cal-
culated on a coarser grid (around 30× 30), upsampled
to the image resolution and Gaussian smoothed. The
running time is less than 60s on a Pentium-4 2GHz
computer using an unoptimized code written in C#.

7. Conclusion

We introduced a new active contour method (ACM)
inspired from the graph partitioning methods (GPM).
We have shown relations of our method to GPM and
shown how to improve the shortcomings of GPM within
the curve evolution framework. Using ACM, we can
do many things that are not practical with GPM. One
of these advantages of ACM is the ease and variety
of ways of integrating the edge and boundary infor-
mation. One way to integrate edge information is to
change the similarity measure to consider the fact that
there might be an edge between two points of an im-
age. In that case, these points should be labeled as
dissimilar. This is how GPM integrates edge informa-
tion with the segmentation. This is directly applicable
to our ACM. Curve evolution methods can also inte-
grate edge information to their PDE. If g is an edge
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(a) (b) (c)

(d) (e)

Figure 2: The training set for the “golf course” object class, along with hand-drawn boundaries.

function and ~S is an edge vector field [11], (8) can be
rewritten as:

∂C

∂t
= g

(∫∫

Ro(C)

w(s, c)ds−
∫∫

Ri(C)

w(s, c)ds

)
~N

−γgκ ~N + (~S · ~N) ~N.

We proposed an iterative method to tailor models to
segment specified geo-spatial objects with the desired
segmentation quality. To this end, we devised an adap-
tive segmentation method based on pairwise similarity.
This operates on a probability field (computed using
the model) in order to segment an image into object
and background. Preliminary results demonstrated the
effectiveness of both the segmentation method and the
model tailoring process.

As part of our future work, the convergence proper-
ties of the TailorModel algorithm are under scrutiny.
We are also working on creating a robust updating
framework that is more closely integrated to the seg-
mentation method. In this work, segmentation feed-
back is used only in the training phase, where it is
compared with labeled training images. Afterward, rel-
evance feedback from the user could be used to keep
the model up-to-date.

Models can be tailored for different objects using ap-
propriate features. Although our experiments use geo-
spatial data and texture features, our approach is quite
general and should be applicable to other data and fea-
tures. Furthermore, it is straightforward to extend the
above approach to object detection and related tasks
such as computing areas and bounding boxes for ob-
jects.
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