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ABSTRACT 
 
This paper presents an overview of our recent work on managing image and video data. The first half of the paper 
describes a representation for the semantic spatial layout of video frames. In particular, Markov random fields are used 
to characterize the spatial arrangement of frame tiles that are labeled using support vector machine classifiers. The 
representation is shown to support similarity retrieval at the semantic level as demonstrated in a prototype video 
management system. The second half of the paper describes a method for efficiently computing nearest neighbor 
queries in high-dimensional feature spaces in a relevance feedback framework. 
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1. INTRODUCTION 

This paper is an overview of our recent work on managing image and video data. Two challenges in particular are 
addressed: 1) how to represent the semantic spatial layout of frames in a video, and 2) how to efficiently compute 
nearest neighbor queries in high-dimensional spaces in a relevance feedback loop. To address the first challenge, we 
present an approach to modeling the common texture features and their spatial distribution in video frames. A semantic 
labeling of frame regions is achieved by using the class-conditioned texture feature likelihoods obtained from support 
vector machines to bias the Gibbs energy functions of a Markov random field. The region labeling is formulated as an 
optimization problem in which a causal greedy algorithm is used to make the assignments. To address the second 
challenge, we present a method to efficiently compute nearest neighbor queries in a relevance feedback loop. An 
adaptive algorithm computes the nearest neighbors at each query iteration based on the current set of nearest neighbors 
and the modified weight matrix of a quadratic distance measure. 

2. SEMANTIC SPATIAL LAYOUT 

This section describes a semantic/spatial analysis technique for video data at the frame level. There are two fundamental 
challenges to performing such an analysis: 1) semantically labeling the basic video frame elements, and 2) representing 
the spatial layout of these elements. Many techniques have been proposed to semantically labeling image content using 
extracted content features. Support vector machines (SVMs)1 are one of the more successful of these techniques 
especially for complex feature distributions in high-dimensional spaces. However, such an application of SVMs does 
not consider the spatial distribution of the data. Alternately, Markov random fields (MRFs) are one of the more 
successful techniques for modeling the spatial distribution of image data2,3,4,5 . The hidden random fields are used to 
assign semantic labels to lattice sites by considering both the spatial layout and content features of the data. The feature 
vectors corresponding to a label are commonly assumed to be clustered in the feature space. This is not always true, 
however, for real image data. For example, an empty parking lot and a parking lot that is full of cars are visually 
different and therefore unlikely to be close in the feature space. But they are both parking lots. General MRF models are 
thus inadequate for representing the spatial layout of semantic classes with complex feature dis tributions. 
 
We propose an SVM -MRF model for analyzing the semantic spatial layout of video data at the frame level. This model 
combines an SVM’s capacity to classify complex feature distributions with an MRF’s capacity to represent complex 
spatial layouts . Video frame tiles are taken to be the basic elements. Texture features based on Gabor wavelets6 are 
extracted since we are analyzing remote sensed aerial video that only contains a single infrared band. A manually 
labeled training set is used to train a tile level classifier in three steps. First, the training set is clustered in the texture 
feature space. Second, the training labels are used to train a set of SVMs for each cluster. Finally, the spatial layout of 



the training set is modeled as an MRF. After the classifier has been trained, novel video frames are labeled by using the 
MRF to refine the SVM tile classifications. This labeling can be used to provide semantic level browsing and similarity 
retrieval. 

2.1. Feature clustering 

The statistical distribution of texture features corresponding to different semantic classes, such as roads, buildings, 
fields, etc., can be learned using a labeled training set. In the proposed approach, the video frames are divided into 
64×64 pixel non-overlapping tiles. A 30 dimension illumination normalized Gabor wavelet texture feature5 is extracted 
for each tile. A training set is created by manually labeling video frame tiles using a predetermined set of semantic 
classes. Since the texture features tend to be clustered in the high-dimensional space, GMMs are used to model their 
statistical distribution. However, since semantically similar tiles are often visually quite different, it is unreasonable to 
expect that 1) the clusters are semantically homogeneous, or 2) that the features from a particular semantic class form a 
cluster. Therefore, the role of the GMMs is not to provide a semantic clustering of the features but to initialize the SVM 
stage of the classification. In particular, they allow a separate set of SVMs to semantically classify each of the clusters 
in the high-dimensional space. 

 
The GMMs are applied in a lower-dimensional space since clustering high-dimensional spaces is a challenge. Principle 
component analysis (PCA) is used to reduce the dimension of the feature space by representing each normalized 

training feature vector using d eigenfeatures, where d<30. The transformed feature vectors dY R∈  are modeled as a 
mixture of K  Gaussians. The probability density of these vectors, assuming a full covariance model, is therefore 
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component is the d×d positive definite matrix jΣ . The expectation maximization (EM) algorithm7 is used to estimate 

the GMM parameters using the training set. The results at the end of this step are K Gaussian distributed feature 
clusters. 

2.2. SVM marginal distribution 

In this step, SVMs are used to model the feature distributions of the semantic classes within each cluster. This is 
motivated by the observation that even though the textures in a cluster are visually similar in a global sense, they vary 
enough to belong to different semantic classes. The feature vectors in a cluster can be effectively classified using SVMs 
through the selection of suitable kernels. 
 
The SVMs are not applied in the reduced dimension space, but in the original feature space. Since SVMs are binary 
classifiers, a set of “one-against-other”8 SVMs are used to perform multi-class classification. In this approach, SVMs 
that separate one class from the others are constructed. Multi-class classification is enabled by arbitrating between these 
SVMs. A fundamental challenge in using SVMs in an MRF framework is that they do not provide a probabilistic 
classification. Platt9 addresses this problem by introducing an additional sigmoid function that maps the SVM outputs to 
probabilities. Suppose that a feature vector y is to be classified into one of M semantic classes. Let the output of the mth 
SVM be  
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The SVM marginal distribution is then computed as 
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where η  is a constant. A maximum likelihood classifier can then be used to classify feature vector y  
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This classification can result in an inconsistent labeling, however, since the spatial relationships of neighboring tiles are 
not considered. For example, it is possible that a tile labeled as “street” is surrounded by tiles labeled as “sky”. The 
spatial distribution of the semantic labels must be considered in order to resolve this semantic conflict. The next section 
describes how MRFs are used to accomplish this. 

2.3. Spatial Layout Consistency 

An effective way of improving the SVM classification is to impose constraints on the spatial arrangement of the labels. 
Inconsistencies can be ruled-out, such as a tile labeled “parking lot” being surrounded by tiles labeled “water.” The 
particular approach uses MRFs to model the spatial distribution of the class labels. The label of a tile at site s is modeled 
as a discrete-valued random variable Xs, taking values from the semantic label set {1,2,..., }M=M , and the set of 

random variables { },sX X s S= ∈  constitutes a random field where S is the lattice of image blocks. The random field X 

is modeled as an MRF with a Gibbs distribution,8 

 

( )1
( ) U xp x e

Z
−=        (6) 

 
where x is a realization of X. The Gibbs energy function U(x) can be expressed as the sum of clique potential functions, 
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where Q is the set of all cliques in a neighborhood. The MRF model is reinforced by incorporating the class-conditioned 
feature likelihoods into the energy function, as follows:  
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where log( ( , ))s s s s s sLP p x x′ ′ ′− −=  and ( )log ( | )
ss s xLP p y θ= . Ns is the neighbors of the site s, and α and β are the 

weights of sLP  and s sLP ′−  respectively. 's sLP −  represents the spatial relationship between neighboring sites s and s' 



where s-s' indicates the direction of neighborhood. sLP  represents the conditional probability density of feature vector 

ys given the label sx . ( , )ss s sp x x− ′ ′  is the joint probability of sx and sx ′  along the direction s-s' and can be 
approximated with a co-occurrence matrix computed using the labeled training set. For each type of clique s-s' , a co-
occurrence matrix is constructed from the joint probabilities ( , )rP i j  between pairs of semantic labels i and j in a given 
direction r. 
 
In order to simplify the model, a second order pair-site neighborhood system is used. Each site thus has eight neighbors. 
Four types of cliques are considered, wherein s-s' makes angles of 0, 45, 90, and 135 degrees with respect to the x-axis. 
In any neighborhood, cliques along the same direction are considered equivalent. Four co-occurrence matrices are 
constructed along these four directions of label distribution. 

2.4. Spatial layout retrieval 

In this step, a representation termed semantic layout is used to characterize an image or video frame based on the spatial 
arrangement of its labeled tiles. For retrieval purposes, the similarity between the query image and each stored image 

can be determined from their semantic layouts. Let the semantic layout of the query image be qX  and that of the stored 
image be IX . In order to improve the retrieval performance, a soft classification scheme is adopted. For a given image 
tile, the labels with the three largest local conditional probabilities are selected to represent this tile. All candidate labels 
are stored along with the feature vectors for future retrieval. The modified semantic layout similarity between the query 
image and each stored image is given by: 
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where 11 2 , 1,2,3i
ia i−= =  are the weights for different label similarities, and ,

q
s jx  is the jth candidate label of the 

query tile at site s. The similarity measure shown in Eq. (9) is computed by comparing each candidate label of a query 
tile to all the candidate labels of the corresponding target tile. This approach to similarity retrieval is expected to 
perform better than methods that do not consider the underlying semantics. The similarity measure in Eq. (9) is effective 
only when all images are of the same size. In order to compare the layouts of images of any size, a semantic histogram 
can be computed for each image. This is similar to the image histogram where the inputs are semantic labels instead of 
image intensities. As long as the semantic label set is the same, two different sized images can be compared using their 
semantic histograms. 
 
Examples of semantic spatial layout retrieval in a prototype video management system are shown in Fig.1. The top 
frame is the query and remaining frames are the results. The semantic labeling of the query is shown. Observe that the 
retrieved frames can be visually quite different from the query even though their semantic layouts are similar. These 
results could not be achieved using a low-level description alone. The combination of SVM and MRF models is thus 
shown to capture the semantic spatial layout of the frames. Fig. 2 shows an example of retrieval based on semantic 
histograms. Fig. 2(a) shows how a query with 50% freeway and 50% is specified in the prototype system. Fig. 2(b) 
shows the top four retrievals for such a query. These results demonstrate how the proposed SVM -MRF method supports 
frame -level semantic spatial layout similarity retrieval. Users can either supply a query image or construct one using a 
simple interface. In either case, the user does not need to be familiar with the low-level features but can interact with the 
system at a semantic level. 



3. ADAPTIVE NEAREST NEIGHBOR SEARCH 

In database research, indexing structures are used to prune the search space. Recently, there has been much work on 
indexing structures to support high-dimensional feature spaces  However, as reported in 10, the effectiveness of many of 
these indexing structures is highly data dependent and, in general, difficult to predict. Often a simple linear scan of the 
database items is cheaper than using an index based search in high dimensions. 
 
An alternative to high-dimensional index structures is sequential search over a compressed representation of the 
database items. The vector approximation file (VA-file) 11 is one such representation. In the VA -file architecture, the 
feature space is quantized and each feature vector in the database is encoded with a compressed representation. 
Sequential search over quantized candidates reduces the search complexity. Only a fraction of the actual feature vectors 
is accessed, thus reducing the number of page accesses. 
 
Consider a database f of N elements Fi, where Fi is an M-dimensional feature vector. Let Q be the query object from 
the database f. Define the quadratic distance metric d(Q, Fi, W)  between query Q and a database object Fi as: 
 

d2(Q, Fi, Wt)= (Q-Fi)
TWt(Q-Fi)     (10) 

 
where Wt is a symmetric, real and positive definite matrix. In the VA -file representation, each of the feature space 
dimensions is partitioned into non-overlapping segments. Generally, the number of segments is 2Bj, j =1,…,M. Bj is the 
number of bits allocated to dimension j. For a feature vector Fi, its approximation C(Fi) is an index to the cell containing 
Fi. If Fi is in partition p, p=0,1,2,…,2Bj-1 along the jth  dimension, the boundary points that determine the pth  partition 
are bpj and bp+1j where bpj = fij< bp+1j. 

3.1. Nearest neighbor (NN) search 

VA-file based nearest neighbor search can be considered as a two phase filtering process10. In Phase I, the set of all 
vector approximations is scanned sequentially and lower and upper bounds on the distances of each object in the 
database to the query object are computed. Let ? be the Kth largest upper bound found from the scanned approximations. 
During the scan, a buffer is used to keep track of ?. If an approximation is encountered such that its lower bound is 
larger than ?, the corresponding feature vector can be skipped since at least K better candidates exist. Otherwise, the 
approximation will be selected as a candidate and its upper bound will be used to update the buffer, if necessary. The 
resulting set of candidate objects at this stage is N1(Q,W) , and the number of elements in the set is |N1(Q,W)|. Phase II 
finds K nearest neighbors from the feature vectors contained in the approximations filtered in Phase I. The actual feature 
vectors, whose approximations belong to a candidate set N1(Q,W) , are accessed. The feature vectors are visited in 
increasing order of their lower bounds and the exact distances to the query vector are computed. If a lower bound is 
reached that is larger than the Kth actual nearest neighbor distance encountered so far, there is no need to visit the 
remaining candidates. Let N2(Q,W)  be the set of objects visited before the lower bound threshold is encountered. The K 
nearest neighbors are found by sorting the |N2(Q,W) | distances. In database searches, the disk/page access is an 
expensive process. The number of candidates from Phase I filtering determines the cost of disk access/page access. Our 
focus is on improving Phase I filtering in the presence of relevance feedback. 

3.2. Relevance feedback 

In the context of content-based image retrieval, relevance feedback has attracted considerable attention. In a typical 
scenario, given a set of retrievals for an image query, the user may identify some relevant and some non-relevant 
examples. Based on this, the similarity metric is modified to compute the next set of retrievals.  Modification to the 
similarity metric should help provide better matches to a given query and meet the user's expectations. 
 
Let Wt be the weight matrix used in iteration t, and Rt be the set of K nearest neighbors to the query object Q. At 
iteration t, define the k th positive example vector, k={1,...,K'} , as:  
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k k1 k2 kM kX =[ x , x x ] , X MR∈… .    (11) 
 



K'  is the number of relevant objects identified by the user. These K' examples are used to modify the weight matrix Wt 
to Wt+1. We consider an optimized learning technique that merges two existing well known updating schemes. The first 
scheme termed MARS12 restricts Wt to be a diagonal matrix. The weight matrix is modified using the standard deviation 
sm of xkm

(t), m={1,...,M}.  The weight matrix is normalized after every update and the result is: 
 

1M
2 M

t+1 m i2
i=1m

1(W )  = ( )σ
σ ∏ .     (12) 

The second scheme termed MindReader13 updates the full weight distance matrix Wt, by minimizing the distances 
between the query and all positive feedback examples. In this scheme, the user picks K' positive examples, and assigns a 
degree of relevance pk

(t) to the k th  positive example Xk
(t). The optimal solution for Wt is equivalent to the Mahalanobis 

distance if we assume the Gaussianity of positive examples, i.e: 
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The elements of the covariance matrix Ct are defined as: 
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For K'=M, matrices Ct and Wt are symmetric, real and positive definite, and can be factorized as: 
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The full matrix update approach better captures the dependencies among feature dimensions, thus reducing 
redundancies in high-dimensional feature space and allowing us to filter out more false candidates. The downside of this 
full matrix update approach is that the inverse covariance matrix exists only if number of positive examples K' is larger 
than or equal to the number of feature dimensions M. If K'< M, we adopt the MARS approach. 
 
With this brief introduction, we can now formulate the nearest neighbor search problem as follows: given Rt, Wt, and K', 
the weight matrix Wt+1 is computed from Wt using the above schemes. The challenge is to efficiently compute the next 
set of K nearest neighbors Rt+1, using the current nearest neighbors Rt and the new weight matrix Wt+1. 

3.3. Bound computation 

The nearest neighbor filtering process in the vector approximation approach (Phase I) uses information on lower and 
upper bound of the distances between a query point Q and a feature vector Fi. Given a query Q and a feature vector Fi, 
lower and upper bound of distance of d(Q, Fi, Wt) are defined as Li(Q, Wt) and Ui(Q, Wt) so that the following inequality 
holds: 

 
 ( ,  ) ( ,  ,  )  ( ,  )i t i t i tL Q W d Q F W U Q W≤ ≤ .    (16) 

 
The computation of lower and upper bound of distance d(Q, Fi, Wt) using the VA -file index is straightforward for a 
diagonal Wt. Bounds are constructed based on hyper rectangular approximations. For the case of general quadratic 
distance metric, a nearest neighbor query becomes an ellipsoid query. Points Fi that have the same distance d(Q, Fi, Wt) 
from a query point Q form an ellipsoid centered around query point Q. Lower and upper bound computations in the 



cases of weighted Euclidean and quadratic distance metrics are illustrated in Fig. 3(a). It is computationally expensive to 
determine whether a general ellipsoid intersects a cell in the original feature space. For the quadratic metric, exact 
distance computation between the query object Q and a rectangle C(Fi) requires numerically expensive quadratic 
programming. This undermines the advantages of using a vector approximation indexing structure. Our solution to this 
problem is to approximate the upper and lower bound on a cell, based on approximation techniques for ellipsoid 
queries. 
 
The cell C(D) that approximates feature point D is transformed into the hyper parallelogram C(D') in the mapped space, 
as illustrated in Fig. 3(b). The parallelogram C(D') can be approximated with the bounding hyper rectangular cell 
C'(D'). The weight matrix in the mapped space is ?t, and the quadratic distance becomes a weighted Euclidean distance. 
 
Li(Q, Wt) and Ui(Q, Wt) are approximated in the mapped space with  Li(Q’, ?t) and Ui(Q’, ?t). Conservative bounds on 
rectangular approximations introduced in 14 allow us to avoid the exact distance computation for query object Q and 
every approximation cell C(Fi). However, for restrictive bounds, the distance computation stays quadratic with number 
of feature dimensions. The approximation C(Fi) only specifies the bounding rectangle position in the mapped space. 
Note that the size of relative bounding rectangle depends only on the cell size in the original space, and the rotation 
matrix Pt. The rotational matrix Pt is computed prior to a new search. Also, the computational complexity of the 
distance is further reduced using the fact that the weighted Euclidean distance has the same computational complexity 
as Euclidean distance. Define a rotational mapping for matrix Pt as Q' = Pt Q. All quadratic distances in the original 
space transform to weighted Euclidean distances in the mapped space, i.e.: 
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3.4. Adaptive nearest neighbor search for relevance feedback 

In database searches , the disk/page access is an expensive process, directly proportional to the number of 
approximations determined in Phase I filtering. Phase I filtering determines a subset of approximations from which the 
K nearest neighbors can be retrieved. Let N1opt(Q, Wt) be the minimal set of approximations that contain K nearest 
neighbors. The best case scenario for Phase I filtering is to exactly identify this subset N1(Q,Wt)=N1opt(Q,Wt). However, 
Phase I filtering introduces false candidates. First, the number of false candidates depends on how firm the filtering 
bound is throughout the sequential scan. Second, the approximate lower bound can be much smaller than the real lower 
bound and can introduce many false candidates. The smaller this candidate set is, the better is the indexing and search 
performance.  
 
Let ? be the Kth largest upper bound encountered so far during a sequential scan of approximations. In the standard 
approach, the approximation C(Fi) is included in N1(Q,Wt) only if Li(Q,Wt)< ?, and the ? is updated if Ui(Q,Wt)< ?. 
Only the Kth smallest upper bound from the scanned approximations is available and used for filtering. 
 
Let Rt-1={Fk

(t-1)} be the set of K nearest neighbors of query Q at iteration t-1 under weight matrix Wt-1. Define rt
u(Q)  as: 

rt
u(Q)= max{d(Q, Fk

( t-1), Wt)}. Let Rt={Fk
(t)} be the set of K nearest neighbors from f  to  Q under Wt. Define rt(Q)  as the 

maximum distance between Q and the items in Rt: rt(Q)=max{d(Q, Fk
(t), Wt)}. When Wt-1 is updated to Wt, we can 

establish an upper bound on rt(Q) as: rt(Q) = rt
u(Q)15. For approximation C(Fi) to be a qualified one in N1opt(Q,Wt), its 

lower bound Li(Q,Wt) must satisfy: Li(Q,Wt) = rt
u(Q). Let R1={E, H} be a user's answer set for a query Q in a feature 

space illustrated in Fig. 3(c). When W1 is updated to W2, rt
u(Q)= d(Q, E, W2). The answer set offered to a user will be 

limited to points inside radius rt
u(Q)= d(Q, E, W2), as marked in Fig. 3(c). 

3.5. Adaptive nearest neighbor algorithm 

For t=1, the K-NN search Phase I filtering reduces to standard Phase I filtering10. Note that, in the standard approach, a 
buffer is used to keep track of the value of ?, the Kth largest upper bound found so far during a scan. In practice, this 
buffer is used only when we do not have user feedback. In the presence of relevance feedback, we avoid the buffer 
update, and use a new filtering bound defined as lt

u(Q) . The data filtering (Phase II) step results in a set of K nearest 
neighbors Rt. Then, the algorithm starts a new iteration and increments t. The user identifies positive examples in Rt-1. 
This information is used to update Wt-1 to Wt.  



 
Note that Wt is updated (Pt and ?t are computed in the process) and rt

u(Q)  is computed, before the Phase I filtering is 
started. We decide to choose an approximation C(Fi) as a Phase I candidate if its lower bound is smaller than rt

u(Q). The 
number of such false candidates resulting from Phase I filtering depends on the convergence rate of ? to its final value. 
Using firmer filtering bounds reduces the number of false candidates collected during the sequential scan of the 
approximations14. Note that rt

u(Q) is computed before Phase I filtering. Also, keeping the standard ? updated requires an 
upper bound computation for every candidate10. Calculation of upper bounds and the Kth smallest upper bound is 
expensive under quadratic distance metric. However, if rt

u(Q)  is a Phase I filtering bound for lower bound on distance 
between the query vector and database objects, upper bound computation for each approximation encountered is 
entirely avoided. 

3.6. Experiments 

We compare the standard VA approach to computing the K nearest neighbors to our proposed adaptive method for 
different resolutions S and different filtering bounds as described in the previous sections. We demonstrate the 
efficiency of the proposed approach on a dataset of N=90774  texture feature vectors. 60-dimensional feature vectors are 
formed using the first- and second-order moments of Gabor filter outputs16. The approximations are constructed using 
the standard VA index. Experiments are carried out for different numbers of bits assigned to every dimension, 
S={2,...,8}. A larger value S corresponds to an approximation constructed at a finer resolution. For each query, 
K=M+10 nearest neighbors are retrieved during each iteration. The feedback from the user is based on texture relevance 
only. For a specific query, the user selects K' relevant nearest neighbors to update the distance measure. The distance 
metric is updated before every iteration. Queries Qi are selected from the dataset to cover both dense cluster 
representatives and outliers in the feature space. For a given resolution S, and query vector Qi, let the number of 
candidates from Phase I standard filtering approach be |N1(s)(Qi)| for the standard approach. Let the corresponding 
number for the proposed adaptive method with filtering bound rt

u(Q) be |N1(r)(Qi)|. Define the average numbers of 
Phase I candidates over the example queries and the corresponding effectiveness measure as: 
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1 1 1 |N1 (Q)|
1 = |N1 (Q )|, 1 = |N1 (Q)|, = 
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For the Weighted Euclidean distance, we average over I=20 query vectors, for K=20 nearest neighbors and K'=15 
relevant features for weight matrix update. The number of candidates resulting from the standard and adaptive Phase I 
filtering (with different filtering bounds) is shown in Fig. 4(b). rt

u(Q) restricts the search space even more for finer 
resolutions. Filter bounds at all resolutions are shown in Fig. 4(a). The average gain of the proposed method is not 
monotonic over S, since the results are strongly correlated with distribution of the feature points in the high-dimensional 
space. However, the minimum gain of the proposed adaptive filtering is still significant at as demonstrated in Fig. 4(c). 
When S=8, ? converges to a value that is smaller than rt

u(Q) , but very close to it, as shown in Fig. 4(a). 
 
For the quadratic distance, we average over I=20 query vectors, for K=M+10 nearest neighbors and K'=M+5 relevant 
features for weight matrix update. Filter bound ? rapidly increases when the resolution is smaller, due to the larger sizes 
of the hyper rectangles used in the corresponding approximations. A larger difference between rt

u(Q) and ? should 
impose a significant improvement for the proposed method. Thus, in the presence of relevance feedback we can either 
save some memory for approximation storage or reduce the number of disk accesses for the same resolution. Fig. 5(a) 
shows that the difference between rt

u(Q) and ? increases for lower values of S. At coarser approximation levels, rt
u(Q) 

restricts the search space significantly more than ? (Fig. 5(a)) and further reduces the number of false candidates (Fig. 
5(b)). Results show that the efficiency gain is significant and even more correlated with the distribution of the feature 
points, as demonstrated in Fig. 5(c). 
 

4. CONCLUSION 

This paper presents  some of our recent work on managing image and video data. Two challenges in particular are 
addressed: 1) representing the semantic spatial layout of video frames, and 2) efficiently computing nearest neighbor 
queries in high-dimensional spaces in a relevance feedback loop. These challenges can be viewed as two of the many 



fundamental sub-problems  of the larger challenge of providing efficient and effective access to the growing repositories 
of multimedia data. The temporal dimension makes linear navigation unwieldy for sizable video datasets. Non-linear or 
random access is needed if data consumers are to fully realize the information contained in the videos. Techniques  for 
browsing and retrieving video frames based on their semantic spatial layout, as described and demonstrated in this 
paper, can provide such access. And, as the methods for accessing multimedia data mature, being able to provide 
personalized access will become increasingly important. Relevance feedback is fast becoming one of the more attractive 
approaches since it allows the user interface to remain simple and intuitive. The real challenge is in designing index 
structures that support dynamic queries. The nearest neighbor search scheme presented in this paper is  one possible 
solution for dynamic queries in high-dimensional feature spaces. 
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(a) Query image and its semantic layout. 
 
 
 

 

 
 
 

(b) Top four retrieval results. 
 

Figure 1. An example of semantic spatial layout retrieval. 

 



 
 

(a) Specifying a semantic histogram query. 
 
 

 
 

(b) Semantic histogram retrieval results. 
 

Figure 2. An example of semantic histogram retrieval for a query with 50% freeway and 50% roof. 



 

 
(a)                (b)    (c) 

Figure 3. a) Bound computations for (1) weighted Euclidean and (2) quadratic distance metrics. b) Rotational 
mapping of feature space and approximation cells:  D'=PD. c) Adaptive search space: illustration of using rt

u  to 
limit the search space in Phase I adaptive filtering (shaded space). 

 
 

 
(a)             (b)     (c) 

Figure 4. Adaptive nearest neighbor search for weighted Euclidean metric. 

 
 

 
(a)             (b)     (c) 

Figure 5. Adaptive nearest neighbor search for quadratic distance metric. 

 


