
*newsam1@llnl.gov; phone 925-422-7392

Issues in managing image and video data

Shawn Newsam*a, Jelena Tešicb, Lei Wangb, and B. S. Manjunathb
aLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, USA 94551

bDept. of Elec. and Comp. Eng., University of California, Santa Barbara, CA, USA 93106-9560

ABSTRACT

This paper presents an overview of our recent work on managing image and video data. The first half of the paper
describes a representation for the semantic spatial layout of video frames. In particular, Markov random fields are used
to characterize the spatial arrangement of frame tiles that are labeled using support vector machine classifiers. The
representation is shown to support similarity retrieval at the semantic level as demonstrated in a prototype video
management system. The second half of the paper describes a method for efficiently computing nearest neighbor
queries in high-dimensional feature spaces in a relevance feedback framework.

Keywords: Texture, spatial layout, semantic retrieval, nearest neighbor query, relevance feedback.

1. INTRODUCTION

This paper is an overview of our recent work on managing image and video data. Two challenges in particular are
addressed: 1) how to represent the semantic spatial layout of frames in a video, and 2) how to efficiently compute
nearest neighbor queries in high-dimensional spaces in a relevance feedback loop. To address the first challenge, we
present an approach to modeling the common texture features and their spatial distribution in video frames. A semantic
labeling of frame regions is achieved by using the class-conditioned texture feature likelihoods obtained from support
vector machines to bias the Gibbs energy functions of a Markov random field. The region labeling is formulated as an
optimization problem in which a causal greedy algorithm is used to make the assignments. To address the second
challenge, we present a method to efficiently compute nearest neighbor queries in a relevance feedback loop. An
adaptive algorithm computes the nearest neighbors at each query iteration based on the current set of nearest neighbors
and the modified weight matrix of a quadratic distance measure.

2. SEMANTIC SPATIAL LAYOUT

This section describes a semantic/spatial analysis technique for video data at the frame level. There are two fundamental
challenges to performing such an analysis: 1) semantically labeling the basic video frame elements, and 2) representing
the spatial layout of these elements. Many techniques have been proposed to semantically labeling image content using
extracted content features. Support vector machines (SVMs)1 are one of the more successful of these techniques
especially for complex feature distributions in high-dimensional spaces. However, such an application of SVMs does
not consider the spatial distribution of the data. Alternately, Markov random fields (MRFs) are one of the more
successful techniques for modeling the spatial distribution of image data2,3,4,5 . The hidden random fields are used to
assign semantic labels to lattice sites by considering both the spatial layout and content features of the data. The feature
vectors corresponding to a label are commonly assumed to be clustered in the feature space. This is not always true,
however, for real image data. For example, an empty parking lot and a parking lot that is full of cars are visually
different and therefore unlikely to be close in the feature space. But they are both parking lots. General MRF models are
thus inadequate for representing the spatial layout of semantic classes with complex feature dis tributions.

We propose an SVM -MRF model for analyzing the semantic spatial layout of video data at the frame level. This model
combines an SVM’s capacity to classify complex feature distributions with an MRF’s capacity to represent complex
spatial layouts . Video frame tiles are taken to be the basic elements. Texture features based on Gabor wavelets6 are
extracted since we are analyzing remote sensed aerial video that only contains a single infrared band. A manually
labeled training set is used to train a tile level classifier in three steps. First, the training set is clustered in the texture
feature space. Second, the training labels are used to train a set of SVMs for each cluster. Finally, the spatial layout of

the training set is modeled as an MRF. After the classifier has been trained, novel video frames are labeled by using the
MRF to refine the SVM tile classifications. This labeling can be used to provide semantic level browsing and similarity
retrieval.

2.1. Feature clustering

The statistical distribution of texture features corresponding to different semantic classes, such as roads, buildings,
fields, etc., can be learned using a labeled training set. In the proposed approach, the video frames are divided into
64×64 pixel non-overlapping tiles. A 30 dimension illumination normalized Gabor wavelet texture feature5 is extracted
for each tile. A training set is created by manually labeling video frame tiles using a predetermined set of semantic
classes. Since the texture features tend to be clustered in the high-dimensional space, GMMs are used to model their
statistical distribution. However, since semantically similar tiles are often visually quite different, it is unreasonable to
expect that 1) the clusters are semantically homogeneous, or 2) that the features from a particular semantic class form a
cluster. Therefore, the role of the GMMs is not to provide a semantic clustering of the features but to initialize the SVM
stage of the classification. In particular, they allow a separate set of SVMs to semantically classify each of the clusters
in the high-dimensional space.

The GMMs are applied in a lower-dimensional space since clustering high-dimensional spaces is a challenge. Principle
component analysis (PCA) is used to reduce the dimension of the feature space by representing each normalized

training feature vector using d eigenfeatures, where d<30. The transformed feature vectors dY R∈ are modeled as a
mixture of K Gaussians. The probability density of these vectors, assuming a full covariance model, is therefore

{ }1

1

1 1
(|) exp () ()

2(2) | |

K
T

j j j jd
j

j

f y y yθ α µ µ
π

−

=

= − − Σ −
Σ

∑ (1)

where { }
1

, ,
K

j j j j
θ α µ

=
= Σ are the GMM parameters. The prior probability of the jth component is jα with the

constraints 0jα > and
1

1
K

j

j

α
=

=∑ . The mean vector of the jth component is
d

j Rµ ∈ , and the covariance matrix of the jth

component is the d×d positive definite matrix jΣ . The expectation maximization (EM) algorithm7 is used to estimate

the GMM parameters using the training set. The results at the end of this step are K Gaussian distributed feature
clusters.

2.2. SVM marginal distribution

In this step, SVMs are used to model the feature distributions of the semantic classes within each cluster. This is
motivated by the observation that even though the textures in a cluster are visually similar in a global sense, they vary
enough to belong to different semantic classes. The feature vectors in a cluster can be effectively classified using SVMs
through the selection of suitable kernels.

The SVMs are not applied in the reduced dimension space, but in the original feature space. Since SVMs are binary
classifiers, a set of “one-against-other”8 SVMs are used to perform multi-class classification. In this approach, SVMs
that separate one class from the others are constructed. Multi-class classification is enabled by arbitrating between these
SVMs. A fundamental challenge in using SVMs in an MRF framework is that they do not provide a probabilistic
classification. Platt9 addresses this problem by introducing an additional sigmoid function that maps the SVM outputs to
probabilities. Suppose that a feature vector y is to be classified into one of M semantic classes. Let the output of the mth
SVM be

, ,() (,)m m i m i i
i

f y x k y y bα= +∑ (2)

where (),k ⋅ ⋅ is the kernel function and

,

1, if thelabelof is

1, otherwise
i

m i

y m
x

−
=

. (3)

The SVM marginal distribution is then computed as

1
(|)

1 exp(())z

p y z
f yη

=
+

 (4)

where η is a constant. A maximum likelihood classifier can then be used to classify feature vector y

()
1

1

1

argmax (|)

argmax | ()

1argmax ()
1 exp(())

m M

m M

m M m

x P m y

p y m P m

P m
f yη

≤ ≤

≤ ≤

≤ ≤

=

=

=
+

. (5)

This classification can result in an inconsistent labeling, however, since the spatial relationships of neighboring tiles are
not considered. For example, it is possible that a tile labeled as “street” is surrounded by tiles labeled as “sky”. The
spatial distribution of the semantic labels must be considered in order to resolve this semantic conflict. The next section
describes how MRFs are used to accomplish this.

2.3. Spatial Layout Consistency

An effective way of improving the SVM classification is to impose constraints on the spatial arrangement of the labels.
Inconsistencies can be ruled-out, such as a tile labeled “parking lot” being surrounded by tiles labeled “water.” The
particular approach uses MRFs to model the spatial distribution of the class labels. The label of a tile at site s is modeled
as a discrete-valued random variable Xs, taking values from the semantic label set {1,2,..., }M=M , and the set of

random variables { },sX X s S= ∈ constitutes a random field where S is the lattice of image blocks. The random field X

is modeled as an MRF with a Gibbs distribution,8

()1
() U xp x e

Z
−= (6)

where x is a realization of X. The Gibbs energy function U(x) can be expressed as the sum of clique potential functions,

() ()c
c Q

U x V x
∈

= ∑ (7)

where Q is the set of all cliques in a neighborhood. The MRF model is reinforced by incorporating the class-conditioned
feature likelihoods into the energy function, as follows:

()
s

s s s
s S s N

U x LP LPα β′−
′∈ ∈

 = − −

∑ ∑ (8)

where log((,))s s s s s sLP p x x′ ′ ′− −= and ()log (|)
ss s xLP p y θ= . Ns is the neighbors of the site s, and α and β are the

weights of sLP and s sLP ′− respectively. 's sLP − represents the spatial relationship between neighboring sites s and s'

where s-s' indicates the direction of neighborhood. sLP represents the conditional probability density of feature vector

ys given the label sx . (,)ss s sp x x− ′ ′ is the joint probability of sx and sx ′ along the direction s-s' and can be
approximated with a co-occurrence matrix computed using the labeled training set. For each type of clique s-s' , a co-
occurrence matrix is constructed from the joint probabilities (,)rP i j between pairs of semantic labels i and j in a given
direction r.

In order to simplify the model, a second order pair-site neighborhood system is used. Each site thus has eight neighbors.
Four types of cliques are considered, wherein s-s' makes angles of 0, 45, 90, and 135 degrees with respect to the x-axis.
In any neighborhood, cliques along the same direction are considered equivalent. Four co-occurrence matrices are
constructed along these four directions of label distribution.

2.4. Spatial layout retrieval

In this step, a representation termed semantic layout is used to characterize an image or video frame based on the spatial
arrangement of its labeled tiles. For retrieval purposes, the similarity between the query image and each stored image

can be determined from their semantic layouts. Let the semantic layout of the query image be qX and that of the stored
image be IX . In order to improve the retrieval performance, a soft classification scheme is adopted. For a given image
tile, the labels with the three largest local conditional probabilities are selected to represent this tile. All candidate labels
are stored along with the feature vectors for future retrieval. The modified semantic layout similarity between the query
image and each stored image is given by:

3

3 1 , ,1
1

3 3

2 , ,2 , ,1
1 1

3 3 3

3 , ,3 , ,1 , ,2
1 1 1

(,)

(,) 1 (,)

(,) 1 (,) 1 (,)

q I
j s j s

s S j

q qI I
j s j s s i s

s S j i

q q qI I I
j s j s s i s s i s

s S j i i

S a a x x

a a x x x x

a a x x x x x x

δ

δ δ

δ δ δ

∈ =

∈ = =

∈ = = =

 =

 + −

 + − −

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

 (9)

where 11 2 , 1,2,3i
ia i−= = are the weights for different label similarities, and ,

q
s jx is the jth candidate label of the

query tile at site s. The similarity measure shown in Eq. (9) is computed by comparing each candidate label of a query
tile to all the candidate labels of the corresponding target tile. This approach to similarity retrieval is expected to
perform better than methods that do not consider the underlying semantics. The similarity measure in Eq. (9) is effective
only when all images are of the same size. In order to compare the layouts of images of any size, a semantic histogram
can be computed for each image. This is similar to the image histogram where the inputs are semantic labels instead of
image intensities. As long as the semantic label set is the same, two different sized images can be compared using their
semantic histograms.

Examples of semantic spatial layout retrieval in a prototype video management system are shown in Fig.1. The top
frame is the query and remaining frames are the results. The semantic labeling of the query is shown. Observe that the
retrieved frames can be visually quite different from the query even though their semantic layouts are similar. These
results could not be achieved using a low-level description alone. The combination of SVM and MRF models is thus
shown to capture the semantic spatial layout of the frames. Fig. 2 shows an example of retrieval based on semantic
histograms. Fig. 2(a) shows how a query with 50% freeway and 50% is specified in the prototype system. Fig. 2(b)
shows the top four retrievals for such a query. These results demonstrate how the proposed SVM -MRF method supports
frame -level semantic spatial layout similarity retrieval. Users can either supply a query image or construct one using a
simple interface. In either case, the user does not need to be familiar with the low-level features but can interact with the
system at a semantic level.

3. ADAPTIVE NEAREST NEIGHBOR SEARCH

In database research, indexing structures are used to prune the search space. Recently, there has been much work on
indexing structures to support high-dimensional feature spaces However, as reported in 10, the effectiveness of many of
these indexing structures is highly data dependent and, in general, difficult to predict. Often a simple linear scan of the
database items is cheaper than using an index based search in high dimensions.

An alternative to high-dimensional index structures is sequential search over a compressed representation of the
database items. The vector approximation file (VA-file) 11 is one such representation. In the VA -file architecture, the
feature space is quantized and each feature vector in the database is encoded with a compressed representation.
Sequential search over quantized candidates reduces the search complexity. Only a fraction of the actual feature vectors
is accessed, thus reducing the number of page accesses.

Consider a database f of N elements Fi, where Fi is an M-dimensional feature vector. Let Q be the query object from
the database f. Define the quadratic distance metric d(Q, Fi, W) between query Q and a database object Fi as:

d2(Q, Fi, Wt)= (Q-Fi)
TWt(Q-Fi) (10)

where Wt is a symmetric, real and positive definite matrix. In the VA -file representation, each of the feature space
dimensions is partitioned into non-overlapping segments. Generally, the number of segments is 2Bj, j =1,…,M. Bj is the
number of bits allocated to dimension j. For a feature vector Fi, its approximation C(Fi) is an index to the cell containing
Fi. If Fi is in partition p, p=0,1,2,…,2Bj-1 along the jth dimension, the boundary points that determine the pth partition
are bpj and bp+1j where bpj = fij< bp+1j.

3.1. Nearest neighbor (NN) search

VA-file based nearest neighbor search can be considered as a two phase filtering process10. In Phase I, the set of all
vector approximations is scanned sequentially and lower and upper bounds on the distances of each object in the
database to the query object are computed. Let ? be the Kth largest upper bound found from the scanned approximations.
During the scan, a buffer is used to keep track of ?. If an approximation is encountered such that its lower bound is
larger than ?, the corresponding feature vector can be skipped since at least K better candidates exist. Otherwise, the
approximation will be selected as a candidate and its upper bound will be used to update the buffer, if necessary. The
resulting set of candidate objects at this stage is N1(Q,W) , and the number of elements in the set is |N1(Q,W)|. Phase II
finds K nearest neighbors from the feature vectors contained in the approximations filtered in Phase I. The actual feature
vectors, whose approximations belong to a candidate set N1(Q,W) , are accessed. The feature vectors are visited in
increasing order of their lower bounds and the exact distances to the query vector are computed. If a lower bound is
reached that is larger than the Kth actual nearest neighbor distance encountered so far, there is no need to visit the
remaining candidates. Let N2(Q,W) be the set of objects visited before the lower bound threshold is encountered. The K
nearest neighbors are found by sorting the |N2(Q,W) | distances. In database searches, the disk/page access is an
expensive process. The number of candidates from Phase I filtering determines the cost of disk access/page access. Our
focus is on improving Phase I filtering in the presence of relevance feedback.

3.2. Relevance feedback

In the context of content-based image retrieval, relevance feedback has attracted considerable attention. In a typical
scenario, given a set of retrievals for an image query, the user may identify some relevant and some non-relevant
examples. Based on this, the similarity metric is modified to compute the next set of retrievals. Modification to the
similarity metric should help provide better matches to a given query and meet the user's expectations.

Let Wt be the weight matrix used in iteration t, and Rt be the set of K nearest neighbors to the query object Q. At
iteration t, define the k th positive example vector, k={1,...,K'} , as:

(t) (t) (t) (t) (t)T

k k1 k2 kM kX =[x , x x] , X MR∈… . (11)

K' is the number of relevant objects identified by the user. These K' examples are used to modify the weight matrix Wt
to Wt+1. We consider an optimized learning technique that merges two existing well known updating schemes. The first
scheme termed MARS12 restricts Wt to be a diagonal matrix. The weight matrix is modified using the standard deviation
sm of xkm

(t), m={1,...,M}. The weight matrix is normalized after every update and the result is:

1M
2 M

t+1 m i2
i=1m

1(W) = ()σ
σ ∏ . (12)

The second scheme termed MindReader13 updates the full weight distance matrix Wt, by minimizing the distances
between the query and all positive feedback examples. In this scheme, the user picks K' positive examples, and assigns a
degree of relevance pk

(t) to the k th positive example Xk
(t). The optimal solution for Wt is equivalent to the Mahalanobis

distance if we assume the Gaussianity of positive examples, i.e:

1
-1

t+1 t tW = det(C) (C) M . (13)

The elements of the covariance matrix Ct are defined as:

' () () ()
k ki kj1

t ij K' ()
ki=1

()()
(C) =

K t t t
i jk
t

x q x qπ

π
=

− −∑
∑

. (14)

For K'=M, matrices Ct and Wt are symmetric, real and positive definite, and can be factorized as:

T T
t t t t t t t 1 M

T T
t t t t t t t 1 M

1

1
t t

C = P' 'P ' , P ' P' , ' =diag(' ,..., '),

W = P P , P P , =diag(,...,),

(')
P = P', = .

'

M M
kk

i
i

I

I

λ λ λ λ

λ λ λ λ

λ
λ

λ
=

=

=

∏

 (15)

The full matrix update approach better captures the dependencies among feature dimensions, thus reducing
redundancies in high-dimensional feature space and allowing us to filter out more false candidates. The downside of this
full matrix update approach is that the inverse covariance matrix exists only if number of positive examples K' is larger
than or equal to the number of feature dimensions M. If K'< M, we adopt the MARS approach.

With this brief introduction, we can now formulate the nearest neighbor search problem as follows: given Rt, Wt, and K',
the weight matrix Wt+1 is computed from Wt using the above schemes. The challenge is to efficiently compute the next
set of K nearest neighbors Rt+1, using the current nearest neighbors Rt and the new weight matrix Wt+1.

3.3. Bound computation

The nearest neighbor filtering process in the vector approximation approach (Phase I) uses information on lower and
upper bound of the distances between a query point Q and a feature vector Fi. Given a query Q and a feature vector Fi,
lower and upper bound of distance of d(Q, Fi, Wt) are defined as Li(Q, Wt) and Ui(Q, Wt) so that the following inequality
holds:

 (,) (, ,) (,)i t i t i tL Q W d Q F W U Q W≤ ≤ . (16)

The computation of lower and upper bound of distance d(Q, Fi, Wt) using the VA -file index is straightforward for a
diagonal Wt. Bounds are constructed based on hyper rectangular approximations. For the case of general quadratic
distance metric, a nearest neighbor query becomes an ellipsoid query. Points Fi that have the same distance d(Q, Fi, Wt)
from a query point Q form an ellipsoid centered around query point Q. Lower and upper bound computations in the

cases of weighted Euclidean and quadratic distance metrics are illustrated in Fig. 3(a). It is computationally expensive to
determine whether a general ellipsoid intersects a cell in the original feature space. For the quadratic metric, exact
distance computation between the query object Q and a rectangle C(Fi) requires numerically expensive quadratic
programming. This undermines the advantages of using a vector approximation indexing structure. Our solution to this
problem is to approximate the upper and lower bound on a cell, based on approximation techniques for ellipsoid
queries.

The cell C(D) that approximates feature point D is transformed into the hyper parallelogram C(D') in the mapped space,
as illustrated in Fig. 3(b). The parallelogram C(D') can be approximated with the bounding hyper rectangular cell
C'(D'). The weight matrix in the mapped space is ?t, and the quadratic distance becomes a weighted Euclidean distance.

Li(Q, Wt) and Ui(Q, Wt) are approximated in the mapped space with Li(Q’, ?t) and Ui(Q’, ?t). Conservative bounds on
rectangular approximations introduced in 14 allow us to avoid the exact distance computation for query object Q and
every approximation cell C(Fi). However, for restrictive bounds, the distance computation stays quadratic with number
of feature dimensions. The approximation C(Fi) only specifies the bounding rectangle position in the mapped space.
Note that the size of relative bounding rectangle depends only on the cell size in the original space, and the rotation
matrix Pt. The rotational matrix Pt is computed prior to a new search. Also, the computational complexity of the
distance is further reduced using the fact that the weighted Euclidean distance has the same computational complexity
as Euclidean distance. Define a rotational mapping for matrix Pt as Q' = Pt Q. All quadratic distances in the original
space transform to weighted Euclidean distances in the mapped space, i.e.:

2

t t(, ,) () () (()) (()) (' ') (' ')T T T
i t i t i t i t i i id Q F W Q F W Q F P Q F P Q F Q F Q Fl l= − − = − − = − − . (17)

3.4. Adaptive nearest neighbor search for relevance feedback

In database searches , the disk/page access is an expensive process, directly proportional to the number of
approximations determined in Phase I filtering. Phase I filtering determines a subset of approximations from which the
K nearest neighbors can be retrieved. Let N1opt(Q, Wt) be the minimal set of approximations that contain K nearest
neighbors. The best case scenario for Phase I filtering is to exactly identify this subset N1(Q,Wt)=N1opt(Q,Wt). However,
Phase I filtering introduces false candidates. First, the number of false candidates depends on how firm the filtering
bound is throughout the sequential scan. Second, the approximate lower bound can be much smaller than the real lower
bound and can introduce many false candidates. The smaller this candidate set is, the better is the indexing and search
performance.

Let ? be the Kth largest upper bound encountered so far during a sequential scan of approximations. In the standard
approach, the approximation C(Fi) is included in N1(Q,Wt) only if Li(Q,Wt)< ?, and the ? is updated if Ui(Q,Wt)< ?.
Only the Kth smallest upper bound from the scanned approximations is available and used for filtering.

Let Rt-1={Fk

(t-1)} be the set of K nearest neighbors of query Q at iteration t-1 under weight matrix Wt-1. Define rt
u(Q) as:

rt
u(Q)= max{d(Q, Fk

(t-1), Wt)}. Let Rt={Fk
(t)} be the set of K nearest neighbors from f to Q under Wt. Define rt(Q) as the

maximum distance between Q and the items in Rt: rt(Q)=max{d(Q, Fk
(t), Wt)}. When Wt-1 is updated to Wt, we can

establish an upper bound on rt(Q) as: rt(Q) = rt
u(Q)15. For approximation C(Fi) to be a qualified one in N1opt(Q,Wt), its

lower bound Li(Q,Wt) must satisfy: Li(Q,Wt) = rt
u(Q). Let R1={E, H} be a user's answer set for a query Q in a feature

space illustrated in Fig. 3(c). When W1 is updated to W2, rt
u(Q)= d(Q, E, W2). The answer set offered to a user will be

limited to points inside radius rt
u(Q)= d(Q, E, W2), as marked in Fig. 3(c).

3.5. Adaptive nearest neighbor algorithm

For t=1, the K-NN search Phase I filtering reduces to standard Phase I filtering10. Note that, in the standard approach, a
buffer is used to keep track of the value of ?, the Kth largest upper bound found so far during a scan. In practice, this
buffer is used only when we do not have user feedback. In the presence of relevance feedback, we avoid the buffer
update, and use a new filtering bound defined as lt

u(Q) . The data filtering (Phase II) step results in a set of K nearest
neighbors Rt. Then, the algorithm starts a new iteration and increments t. The user identifies positive examples in Rt-1.
This information is used to update Wt-1 to Wt.

Note that Wt is updated (Pt and ?t are computed in the process) and rt

u(Q) is computed, before the Phase I filtering is
started. We decide to choose an approximation C(Fi) as a Phase I candidate if its lower bound is smaller than rt

u(Q). The
number of such false candidates resulting from Phase I filtering depends on the convergence rate of ? to its final value.
Using firmer filtering bounds reduces the number of false candidates collected during the sequential scan of the
approximations14. Note that rt

u(Q) is computed before Phase I filtering. Also, keeping the standard ? updated requires an
upper bound computation for every candidate10. Calculation of upper bounds and the Kth smallest upper bound is
expensive under quadratic distance metric. However, if rt

u(Q) is a Phase I filtering bound for lower bound on distance
between the query vector and database objects, upper bound computation for each approximation encountered is
entirely avoided.

3.6. Experiments

We compare the standard VA approach to computing the K nearest neighbors to our proposed adaptive method for
different resolutions S and different filtering bounds as described in the previous sections. We demonstrate the
efficiency of the proposed approach on a dataset of N=90774 texture feature vectors. 60-dimensional feature vectors are
formed using the first- and second-order moments of Gabor filter outputs16. The approximations are constructed using
the standard VA index. Experiments are carried out for different numbers of bits assigned to every dimension,
S={2,...,8}. A larger value S corresponds to an approximation constructed at a finer resolution. For each query,
K=M+10 nearest neighbors are retrieved during each iteration. The feedback from the user is based on texture relevance
only. For a specific query, the user selects K' relevant nearest neighbors to update the distance measure. The distance
metric is updated before every iteration. Queries Qi are selected from the dataset to cover both dense cluster
representatives and outliers in the feature space. For a given resolution S, and query vector Qi, let the number of
candidates from Phase I standard filtering approach be |N1(s)(Qi)| for the standard approach. Let the corresponding
number for the proposed adaptive method with filtering bound rt

u(Q) be |N1(r)(Qi)|. Define the average numbers of
Phase I candidates over the example queries and the corresponding effectiveness measure as:

(s)

I I I() (s) () (r) (r) i
i i (r)i=1 i=1 i=1

i

1 1 1 |N1 (Q)|
1 = |N1 (Q)|, 1 = |N1 (Q)|, =

I I I |N1 (Q)|
s rN N a∑ ∑ ∑ . (18)

For the Weighted Euclidean distance, we average over I=20 query vectors, for K=20 nearest neighbors and K'=15
relevant features for weight matrix update. The number of candidates resulting from the standard and adaptive Phase I
filtering (with different filtering bounds) is shown in Fig. 4(b). rt

u(Q) restricts the search space even more for finer
resolutions. Filter bounds at all resolutions are shown in Fig. 4(a). The average gain of the proposed method is not
monotonic over S, since the results are strongly correlated with distribution of the feature points in the high-dimensional
space. However, the minimum gain of the proposed adaptive filtering is still significant at as demonstrated in Fig. 4(c).
When S=8, ? converges to a value that is smaller than rt

u(Q) , but very close to it, as shown in Fig. 4(a).

For the quadratic distance, we average over I=20 query vectors, for K=M+10 nearest neighbors and K'=M+5 relevant
features for weight matrix update. Filter bound ? rapidly increases when the resolution is smaller, due to the larger sizes
of the hyper rectangles used in the corresponding approximations. A larger difference between rt

u(Q) and ? should
impose a significant improvement for the proposed method. Thus, in the presence of relevance feedback we can either
save some memory for approximation storage or reduce the number of disk accesses for the same resolution. Fig. 5(a)
shows that the difference between rt

u(Q) and ? increases for lower values of S. At coarser approximation levels, rt
u(Q)

restricts the search space significantly more than ? (Fig. 5(a)) and further reduces the number of false candidates (Fig.
5(b)). Results show that the efficiency gain is significant and even more correlated with the distribution of the feature
points, as demonstrated in Fig. 5(c).

4. CONCLUSION

This paper presents some of our recent work on managing image and video data. Two challenges in particular are
addressed: 1) representing the semantic spatial layout of video frames, and 2) efficiently computing nearest neighbor
queries in high-dimensional spaces in a relevance feedback loop. These challenges can be viewed as two of the many

fundamental sub-problems of the larger challenge of providing efficient and effective access to the growing repositories
of multimedia data. The temporal dimension makes linear navigation unwieldy for sizable video datasets. Non-linear or
random access is needed if data consumers are to fully realize the information contained in the videos. Techniques for
browsing and retrieving video frames based on their semantic spatial layout, as described and demonstrated in this
paper, can provide such access. And, as the methods for accessing multimedia data mature, being able to provide
personalized access will become increasingly important. Relevance feedback is fast becoming one of the more attractive
approaches since it allows the user interface to remain simple and intuitive. The real challenge is in designing index
structures that support dynamic queries. The nearest neighbor search scheme presented in this paper is one possible
solution for dynamic queries in high-dimensional feature spaces.

ACKNOWLEDGEMENTS

UCRL-CONF-200471: This work was performed in part under the auspices of the U.S. Department of Energy by
University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. It was
supported in part by an award from the Institute of Scientific Computing Research (ISCR) at LLNL, and the following
grants: ONR# N00014-01-1-0391, NSF Instrumentation #EIA-9986057, and NSF Infrastructure #EIA-0080134. The
authors would like to thank S. Chandrasekaran at UCSB and C. Kamath at LLNL for many fruitful discussions.

REFERENCES
1. C. Cortes, V. Vapnik, “Support-vector networks,” Machine Learning, Vol.20, No. 3, pp. 273-297, 1995.
2. J. Besag, “On the statistical analysis of dirty pictures,” Journal of the Royal Statistical Society, Vol.B 48, pp. 259-279, 1986.
3. S. Li, Markov Random Field Modeling in Computer Vision, Springer-Verlag, 1995.
4. L. Wang and J. Liu, “Texture classification using multiresolution Markov random field models,” Pattern Recognition Letters,

Vol.20, No.2, pp. 171-182, 1999.
5. R. Chellappa and A. Jain, Markov Random Fields: Theory and Applications, Academic Press, 1993.
6. B. Manjunath, P. Salembier, and T. Sikora, Introduction to MPEG-7: Multimedia Content Description Interface, Wiley, 2002.
7. A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the Royal

Statistical Society, Vol.B 39, No. 1, pp. 1-38, 1977.
8. K. Kim, K. Jung, S. Park, and H. Kim, “Support vector machines for texture classification,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 24, No.11, pp. 1542-1550, 2002.
9. J. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,” Advances in

Large Margin Classifiers, pp. 61-74, MIT Press, 1999.
10. C. Bohm, S. Berchtold, and D. A. Keim, “Searching in high-dimensional spaces: index structures for improving the performance

of multimedia databases,” ACM Computing Surveys , Vol. 33, No. 3, pp. 322-373, September 2001.
11. R. Weber, H. Schek, and S. Blott, “A quantitative analysis and performance study for similarity-search methods in high-

dimensional spaces,” In Proceedings of the International Conference on Very Large Data Bases , pp. 194-205, August 1998.
12. Y. Rui and T. Huang, “Optimizing learning in image retrieval,” In Proceedings of the IEEE International Conference on

Computer Vision and Pattern Recognition, Vol. 1, pp. 236-243, June 2000.
13. Y. Ishikawa, R. Subramanya, and C. Faloutsos, “Mindreader: querying databases through multiple examples,” In Proceedings of

the International Conference on Very Large Data Bases, pp. 218-227, August 1998.
14. M. Ankerst, B. BraunmÄuller, H. Kriegel, and T. Seidl, “Improving adaptable similarity query processing by using

approximations,” In Proceedings of the International Conference on Very Large Data Bases, pp. 206-217, August 1998.
15. J. Tešic and B. S. Manjunath, “Nearest neighbor search for relevance feedback,” In Proceedings of the IEEE International

Conference on Computer Vision and Pattern Recognition, pp. 643-648, June 2003.
16. B. Manjunath and W. Ma, “Texture features for browsing and retrieval of image data”, IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol.18, No.8, pp. 837-842, 1996.

(a) Query image and its semantic layout.

(b) Top four retrieval results.

Figure 1. An example of semantic spatial layout retrieval.

(a) Specifying a semantic histogram query.

(b) Semantic histogram retrieval results.

Figure 2. An example of semantic histogram retrieval for a query with 50% freeway and 50% roof.

(a) (b) (c)

Figure 3. a) Bound computations for (1) weighted Euclidean and (2) quadratic distance metrics. b) Rotational
mapping of feature space and approximation cells: D'=PD. c) Adaptive search space: illustration of using rt

u to
limit the search space in Phase I adaptive filtering (shaded space).

(a) (b) (c)

Figure 4. Adaptive nearest neighbor search for weighted Euclidean metric.

(a) (b) (c)

Figure 5. Adaptive nearest neighbor search for quadratic distance metric.

