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Abstract— In this paper we introduce new type of variational
segmentation cost functions and associated active contour meth-
ods that are based on pairwise similarities or dissimilarities of the
pixels. As a solution to a minimization problem, we introduce a
new curve evolution framework, the graph partitioning active
contours (GPAC). Using global features, our curve evolution
is able to produce results close to the ideal minimization of
such cost functions. New and efficient implementation techniques
are also introduced in this paper. Our experiments show that
GPAC solution is effective on natural images and computationally
efficient. Experiments on gray scale, color, and texture images
show promising segmentation results.

Index Terms— curve evolution, active contours, image segmen-
tation, pairwise similarity measures, graph partitioning.

I. INTRODUCTION

In the past, variational methods have defined various cost
functions for the task of image segmentation. A popular tool
for the (local) minimization of some of these cost functions
is the curve evolution framework and active contour meth-
ods (ACM). These variational cost functions can be roughly
categorized as contour modeling, region modeling or a com-
bination of these.

An example of a contour modeling cost function is the one
proposed by Caselles et al. [1] for the geodesic active contour
framework. The cost is defined along a curve C and minimized
by evolving the curve in the normal direction.

Min
C

E =
∮

g(C)ds (1)

where g = 1/(1 + |∇Î|) and Î is the Gaussian smoothed
image. Due to the local minimization, this type of edge-based
approaches depend on where the curve is instantiated. By Ini-
tializing curves at different image locations, different objects
of interest can be captured. Global minimization techniques
related to graph partitioning have also been applied to edge-
based curve evolution [2, 3].

A well known example for the region modeling cost func-
tion is the Mumford-Shah functional [4]. A simplified version
of this functional, which models the image with piecewise
constant functions, has been minimized within the curve
evolution framework by Chan et al. [5]:

Min
C

E = α

∫∫

Ri

(I − c1)2 + β

∫∫

Ro

(I − c2)2 + γ

∮
ds (2)

where Ri corresponds to the interior and Ro corresponds to
the exterior of the curve C, c1 and c2 are constants.

We introduce a new class of variational cost functions that
are based on pairwise similarities or dissimilarities between
points. The most basic version of such cost function is:

Min
C

E =
∫∫

Ri

∫∫

Ro

w(p1, p2)dp1dp2 (3)

where p1 ∈ Ro, p2 ∈ Ri and w(p1, p2) is a metric for
the similarity between the points p1 and p2. We will use
the notation w(p1, p2) for representing both similarity and
dissimilarity measures within this paper and the meaning
should be clear from the context. If w is a dissimilarity
measure then (3) is maximized. The objective of minimizing
(3) is to minimize the similarity between the regions Ri and
Ro. We will show later in Section III that (3) also maximizes
the similarity within the regions Ri and Ro.

Within ACM framework, the evolution of the curves can
be controlled by segmentation cost functions, external force
fields and geometric forces such as curvature flow and constant
expansion forces (e.g., balloons, see [6]). Based on the driving
force behind curve evolution, ACM is divided into two groups,
edge-based and region-based ACM. Edge-based ACM attempt
to fit an initial curve to its surrounding edges as best as
possible. Usually the results are highly dependent on where the
curve is initialized. On the other hand, region-based ACM use
regional features of the interior and the exterior of the curve
and it is well established that region-based active contours are
not as dependent on the initial contour as their edge-based
counterparts [7, Chapter 4]. If a curve is initialized at one
side of the image, there is a chance that it may not reach the
other side of the image. However, a grid-wise initialization of
multi-part curves addresses this problem. Since we are solving
a local minimization problem, this still does not guarantee a
global minimum. On the other hand, our experimental results
suggest that most of the time the curve evolution converges
to a reasonably good segmentation result. Usually most local
minima can be avoided.

Previous work on region-based ACM segmented the im-
ages by modeling them as piecewise constant [5], piecewise
smooth functions [8], by maximizing separation of the mean
or variance of neighboring regions [9], or by clustering the
histogram first to estimate region statistics offline and then
tuning the ACM to these statistics [10]. These methods are
typically based on statistics of unknown regions and make
a priori assumptions about the image characteristics. In this
paper, we propose a region-based ACM, graph partitioning
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active contours (GPAC), as a solution to the minimization
problem given in (3).

One popular tool for minimizing pairwise similarity based
cost functions is graph partitioning methods (GPM). A general
advantage of GPM is their use of global minimization tech-
niques, which are desirable for the segmentation problem. On
the other hand, due to the computational issues, GPM often
impose restrictions and simplifications to the original problem,
which might compromise the segmentation quality. For exam-
ple, in normalized cuts approach [11] pairwise similarities are
restricted to local neighborhoods.

A challenge in tackling the problem given in (3) by using
curve evolution techniques is finding computationally efficient
methods. In Section IV, we introduce efficient implementation
methods to address this issue. The implementation techniques
are generic and applicable to most pairwise similarity based
cost functions.

Main contributions of this paper include:
• New variational cost functions: Introduction of a new

class of variational cost functions that are based on pair-
wise similarities. Since such cost functions are popular
for GPM, we are able to combine and integrate many
novel ideas from both variational and graph partitioning
methods to create better techniques.

• Curve evolution solution to these cost functions: We
derive steepest descent minimization of various pairwise
similarity based cost functions within the curve evolution
framework. Minimization of such complex segmentation
cost functions has not been attempted in the past within
the variational framework.

• An efficient implementation framework: Minimization
frameworks for pairwise similarity based cost functions
turn out to be computationally very expensive. Due to the
excessive memory and CPU requirements, naive imple-
mentations are not practical even on high end worksta-
tions. We introduce novel numerical methods for efficient
implementation of the curve evolution techniques that are
derived for the minimization of pairwise similarity based
cost functions.

The rest of the paper is organized as follows. In Section II
we derive the curve evolution solution for the cost function
given in (3). In Section III we analyze the problems with
the original curve evolution solution and suggest maximum
cut framework as an improvement. In Section IV, we discuss
an efficient implementation framework for pairwise similarity
based cost functions. Section V analyzes the behavior of ACM
and GPM. In Section VI, we derive curve evolution solution
for various well-known cost functions that are based on
pairwise similarities. Section VII provides experimental results
using GPAC. In Section VIII-A, we discuss different ways of
integrating the edge information to GPAC. We conclude in
Section VIII-B.

II. CURVE EVOLUTION BASED ON MINIMUM CUT
CRITERION

We now derive a curve evolution solution to the minimum
cut problem. The minimum cut problem originates from graph

partitioning [11-16]. Minimum cut criteria can also be written
as an energy functional in continuous domain. In this case,
the problem is formulated as the partitioning of a continuous
image with a curve, as opposed to a graph cut.

Assume G = (V,E) is a representation of an undirected
graph, where V are the vertices and E are the edges between
these vertices. V can correspond to pixels in an image or
small regions (set of connected pixels). Image segmentation
problem can be formulated as the best bi-partitioning of the
image (cutting the graph) into two regions, A and B. Consider
the following cost function that is minimized by minimum cut
technique [12], which is a graph partitioning method.

cut(A,B) =
∑

u∈A,v∈B

w(u, v) (4)

where w(u, v) is a similarity metric. In continuous domain,
the equivalent energy functional of (4) is then written as:

E =
∫∫

Ri(C(t))

∫∫

Ro(C(t))

w(p1, p2)dp1dp2 (5)

where C is a curve, t is the time parameter of the evolution of
C and Ri and Ro are the interior and the exterior of this curve.
We solve this minimization problem using steepest descent
method where we instantiate a curve and evolve this curve
towards the minimum.

Theorem 2.1: Let ~N be the outward normal of the curve C.
The curve evolution equation that corresponds to the steepest
descent minimization of (5) is:

∂C

∂t
=

(∫∫

Ri(C(t))

w(c, p)dp−
∫∫

Ro(C(t))

w(c, p)dp

)
~N

(6)
where c is a point on the curve C.

Proof:
To find the steepest descent equations, we need to calculate

the first variation of (5). Before attempting this, first we rewrite
(5) as M =

∫∫
Ri(C(t))

G(X, t)dX , where X is a point in 2-D
and G(X, t) =

∫∫
Ro(C)

w(X,Y )dY . Let us write M as:

M(t′(t), τ(t)) =
∫∫

Ri(C(t′))
G(X, τ)dX (7)

where τ(t) = t, t′(t) = t, C = C(t, p) is a closed curve and
p ∈ [0, 1] is a parametrization of this curve. The first variation
of (7) with respect to t is:

∂M

∂t
=

∂M

∂t′
∂t′

∂t
+

∂M

∂τ

∂τ

∂t
(8)

We first calculate the second term, then we will calculate the
first term.

∂M

∂τ
=

∂

∂τ

∫∫

Ri(C(t))

G(X, τ)dX

=
∫∫

Ri(C(t))

∂

∂τ
G(X, τ)dX

(9)

Before calculating the first variation of M with respect to
t′, we write M as a boundary integral using the divergence
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theorem. To do this, we define a vector ~S as:

~S =




1
2

x∫
0

G(λ, y)dλ

1
2

y∫
0

G(x, λ)dλ


 (10)

As can be seen, divergence of ~S is equal to G: ∇ · ~S = G.
Using the divergence theorem, we can write M as:

M =
∫∫

Ri(C(t′))
∇ · ~S dX

=
∮

C

〈
~S, ~N

〉
ds

(11)

where ~N is the outwards normal vector of the curve and 〈, 〉
denotes the scalar product. Derivation of the first variation
of (11) with respect to t′ has been given by Zhu et al. [17,
Appendix], Tsai [7, Appendix A] and Vasilevskiy et al. [18]
independently. For completeness purposes, we also include our
version of the solution to this problem in the Appendix. The
first variation of (11) with respect to t′ is then:

∂M

∂t′
=

∮

C(t′)

〈
Ct′ , G ~N

〉
ds (12)

where Ct corresponds to the derivative of C with respect to
t. Combining (8), (12), and (9), we find that

∂M

∂t
=

∮

C(t)

〈
Ct, G ~N

〉
ds +

∫∫

Ri(C)

∂

∂t
G(X, t)dX (13)

Now, going back to the problem of calculating the first
variation of (5), we utilize the result from (13) to solve this
problem. By inserting G(X, t) =

∫∫
Ro(C)

w(X,Y )dY within
(7), (5) becomes equivalent to (7). Using (13), we can write
the first variation of (5) as:

∂E

∂t
=

∮

C

〈
Ct,

[∫∫

Ro(C)

w(c, p2)dp2

]
~N

〉
ds

+
∫∫

Ri(C)

∂

∂t

[∫∫

Ro(C)

w(p1, p2)dp2

]
dp1

=
∮

C

〈
Ct,

[∫∫

Ro(C)

w(c, p2)dp2

]
~N

〉
ds

+
∫∫

Ri(C)

−
∮

C

〈
Ct, w(p1, c) ~N

〉
ds dp1

=
∮

C

〈
Ct,

[∫∫

Ro(C)

w(c, p)dp−
∫∫

Ri(C)

w(c, p)dp

]
~N

〉
ds

(14)
where c is a point on the curve C. In these calculations, we
used the fact that w(p1, p2) is a symmetric function and is not
a function of t. Thus the first variation of G can be calculated
as ∂G/∂t = − ∮

C(t)

〈
Ct, w ~N

〉
. When integrating on Ro, the

normal vector is in the opposite direction, hence the minus
sign. From (14) we can see that E decreases fastest when:

∂C

∂t
=

(∫∫

Ri(C)

w(c, p)dp−
∫∫

Ro(C)

w(c, p)dp

)
~N (15)

This concludes the proof.

(a) (b) (c) (d)

Fig. 1. a) A large balanced curve initialized, b) foreground object captured
correctly, c) small curve initialized within the foreground, d) initial curve
shrinks and disappears.

Note that each point c on the curve C is compared to the
points within the interior and the exterior of the curve for
similarity. If c is more similar to Ri, the curve expands, and if
c is similar to Ro then the curve shrinks. This guides the curve
towards the boundary between foreground and background
regions in the image. Note that the theory for this result assume
that the image only consists of a foreground and a background.

III. MAXIMUM CUT AND REGION STABILITY

One problem with the minimum cut criterion, which has
been pointed out in [11, 12], is that it favors cutting out small
partitions. This is so, because for small partitions, the total sum
across the cut is small. Our minimum cut framework intro-
duced in Section II also inherits this problem. There is another
problem with our minimum cut framework as illustrated in Fig.
1. Fig. 1(a) shows a black object against a white background.
Let the similarity measure be w(p1, p2) = exp(− |I(p1)−I(p2)|

σI
)

where I corresponds to pixel intensities. Fig. 1 shows results
for two different instantiations of the curves. In Fig. 1(a),
a more balanced curve is initialized, where the interior of
the curve mostly consists of the foreground object and the
exterior consists of the background. The curve evolution finds
the correct result easily. In Fig. 1(c), instantiation of a smaller
curve within the foreground shows one of the problems in
using (15). The similarity of each point on the curve to both
the interior and exterior of the curve is summed and compared
according to (15). In this example, there are more black points
outside the curve than there are inside. So, the total similarity
to Ro is higher, making ∂C

∂t a negative number. This causes
the curve to shrink and disappear (Fig. 1(d)), which is not the
ideal result. The reason for this behavior can be tracked back to
the choice of the similarity measure. In this example we chose
the similarity measure similar to the measures proposed in [11,
12]. On the other hand, choosing a similarity measure such as
w(p1, p2) = −|I(p1) − I(p2)| would help fix this problem1.
Unfortunately, defining the highest possible similarity between
pixels as 0 is counter-intuitive.

Let us define a dissimilarity measure instead of a similarity
measure. Consider

w(p1, p2) = |I(p1)− I(p2)| (16)

as a dissimilarity measure, where similar pixels have 0 dis-
similarity whereas a jump in intensity values cause a high
dissimilarity. We choose this dissimilarity measure for its

1This type of similarity function is proposed in [14, Section 5.2] for ratio
cut in a different context.
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simplicity. More complex dissimilarity measures can integrate
spatial distance of pixels and domain knowledge:

w(pi, pj) = ‖~F (pi)− ~F (pj)‖+α‖pi−pj‖+β‖m(pi)−m(pj)‖
(17)

where ~F (pi) is some low level image feature at point pi

(e.g. color), the second term measures the spatial distance
between two points and the third term measures the distance
using a function m(), which represents some sort of domain
knowledge related to the problem at hand. We have suc-
cessfully utilized such dissimilarity measures within GPAC
framework for pruning categories in image databases [19].
Choice of the (dis)similarity measure is a research issue by
itself and we will not address this problem in this paper.
Based on these definitions of the dissimilarity, we also change
the segmentation criterion from minimizing the graph cut to
maximizing the cut in (5), which corresponds to maximizing
the dissimilarity across the cut. We call this framework as
maximum cut. Maximum cut addresses both of the short-
comings observed with the minimum cut (but introduces a
bias towards equally sized partitions). The integral in (5) is
maximized when there are as many connections as possible,
which encourages larger partitions as opposed to the minimum
cut’s behavior of favoring small isolated regions. We also
observe that both curve instantiations have a tendency to
converge to the ideal result in Fig. 1. Since the cost function is
maximized as opposed to being minimized, the new evolution
equation is the negative of (15).

∂C

∂t
=

(∫∫

Ro(C)

w(c, p)dp−
∫∫

Ri(C)

w(c, p)dp

)
~N (18)

Similar to maximum cut framework, one of the objectives
of normalized cut [11] is to fix the behavior of favoring
small regions in minimum cut. Even though cost function
for maximum cut is different from the cost function used in
normalized cuts, there is some parallelism between them2. To
clarify this consider the following intra-region dissimilarity:

E2 =
∫∫

Ri

∫∫

Ri

w(p1, p2)dp1dp2 +
∫∫

Ro

∫∫

Ro

w(p1, p2)dp1dp2

(19)
where w(p1, p2) is a dissimilarity measure. The objective
is to minimize the intra-region dissimilarity. If we find the
curve evolution equation for minimizing E2, we observe that
it is exactly the same as (18). This is not surprising since
E2 =

∫∫
R

∫∫
R

w(p1, p2)dp1dp2 − 2E = C − 2E, where
R = Ri ∪ Ro, and C is a constant. We can conclude that
using a dissimilarity measure encourages similarity within the
partitions while discouraging inter-region similarity. A parallel
argument is made for normalized cuts based on the region
associations [11].

In Fig. 2, we corrupt the binary image with Gaussian noise
and apply the maximum cut segmentation. As can be seen,
for two different curve instantiations, several one pixel wide
noisy regions are captured. Note that the white points in 2(b)
and (d) correspond to the curve and all boundaries together

2See Section VI-C for a curve evolution solution of the normalized cuts
method.

(a) (b) (c) (d)

Fig. 2. Demonstration of how noise can effect the curve evolution. a)
Single curve initialized overlapping both the foreground and the background,
b) corresponding curve evolution result (all white points correspond to the
curve), c) a multipart curve initialized in a grid fashion, d) corresponding
curve evolution result (all white points correspond to the curve). The curve
evolution on a noisy image splits the curve into many small pieces.

correspond to a single curve over which the cost function is
optimized. GPM usually get around this problem by enforcing
region connectivity, decreasing similarity with spatial distance
and size constraints in its cost functions [14]. ACM solves
this problem by adding a curvature flow component, which
is a geometric component that smooths the curve at each
iteration. Curvature flow can also be derived as minimizing
the curve length

∮
ds, which means that it disfavors splitting

of the curve to small one pixel wide boundaries. The new
evolution equation can be written as:

∂C

∂t
=

(∫∫

Ro

w(c, p)dp−
∫∫

Ri

w(c, p)dp

)
~N − γκ ~N (20)

where γ is a constant and κ is the curvature of the evolving
curve.

Fig. 3 demonstrates curve evolution for four different types
of initializations of the curves. All four of these evolutions
are conducted using (20). This example illustrates that (a) for
a simple and connected object, maximum cut curve evolution
has a tendency to converge to the same segmentation result,
and (b) that curvature-based flow increases robustness of the
curve evolution under noisy conditions.

Normalized Maximum Cut

One of the advantages of using geometric ACM is that we
can introduce geometric properties or constraints into the curve
evolution equation without changing or re-solving the energy
minimization problem. Since curve evolution is an iterative
process, we can add normalization for the integrals in (20)
by dividing them with their corresponding areas. This can be
thought of as re-solving the curve evolution equation at each
iteration3. We call this setup as normalized maximum cut. The
evolution equations become:

∂C

∂t
=

(
1

Ao

∫∫

Ro

w(c, p)dp− 1
Ai

∫∫

Ri

w(c, p)dp

)
~N−γκ ~N

(21)
This shows the flexibility of active contour framework com-
pared to GPM. Fig. 4 shows normalized maximum cut seg-
mentation on an image that is corrupted by Gaussian noise
and applied an illumination effect to the top left corner.

One of our target application domain is natural images. Fig.
5 shows maximum cut segmentation results on a flower image

3In Section VI-B, we will also show the curve evolution solution if Ai and
Ao are taken as functions of t
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Each row corresponds to maximum cut evolution under 4 different
type of curve instantiations. First column corresponds to various initializations
of the curve. Second column shows a state of the curve during the evolution.
Third column shows the segmentation result at convergence. This example
demonstrates the stability of maximum cut framework with respect to curve
instantiation and noise.

(a) (b)

Fig. 4. Segmentation of an image corrupted by Gaussian noise and applied
an illumination effect. a) Original image, b) corresponding curve evolution
result using normalized maximum cut segmentation.

for γ = 0.005 and γ = 0.1 using color information. Distance
between color features are calculated using L1 distance. Our
main algorithm stays the same except the use of a different
dissimilarity measure. Fig. 5(a) is not an easy image for
edge-based methods since there are many edges within the
foreground and significant clutter in the background. For small
γ more details are captured whereas for large γ connected
regions with smoother boundaries are favored. In this exper-
iment, one multi-part curve with 144 sub-parts is initialized
uniformly over the image. We use this type of initialization
for the rest of the paper. Note that if two sub-parts of the
curve touch each other, their boundaries will merge. Level set

methods [20], which are the numerical methods used for all
the implementations in this paper, is able to handle merging
and splitting of the curves naturally and also automatically
keep track of what is the interior and what is the exterior to
a given curve.

Fig. 6 shows normalized maximum cut segmentation for
various curve instantiations. Fig. 6(d) demonstrates the possi-
bility that GPAC converges to an undesired local maximum.
On the other hand, gridwise instantiations of large number of
curves converge to similar and reasonably well segmentations
(Fig. 6(g-l)).

Both maximum cut and normalized maximum cut when
applied to Fig. 5(a) are able to segment the foreground
from the background successfully. In general we observe that
normalized maximum cut gives slightly better results. Main
reason for this is that maximum cut favors equal size regions.
For images where the foreground is larger or smaller than the
background, it is more efficient to use normalized maximum
cut.

IV. EFFICIENT IMPLEMENTATION

The integral calculations in (18) are usually the bottleneck
in terms of computational complexity of the curve evolution.
On the other hand, curve evolution itself can be implemented
efficiently and accurately using narrow band level set methods.
Suppose the image is of size N×M , then we need to calculate
and keep in memory about N2M2/2 dissimilarities. This is
equivalent of generating a symmetric dissimilarity matrix W
with NM rows and columns, where an element in the ith
row and jth column is w(pi, pj). Even for small images, this
will become hard to fit into memory and require too many
computations. We will address these issues in this section
and propose an efficient way of calculating dissimilarities and
implementing the curve evolution given in (18).

For an efficient implementation of our framework, we create
a dissimilarity matrix W ′ of size NM × nm, where n ¿
N and m ¿ M . The elements of W ′ correspond to the
dissimilarity of each pixel (x, y) to a subregion of the image,
e.g. a rectangular tile. W ′ is an approximation of W and we
will demonstrate that minimal segmentation precision is lost
by this approximation. Consider a partitioning of the image
area where we divide the image into n × m equal size tiles
Tij and average the image features F (x, y) within each tile.

F ′ij =
1

Aij

∫

Tij

F (x, y)dxdy (22)

The elements of W ′ for each coordinate (x, y) that falls into
the tile Tij are calculated as ‖F (x, y)− F ′ij‖.

Using W ′, (18) can be implemented efficiently. For each
point c on the curve (actually for all points in the narrow band),
the summation is done over all the tiles whose center falls
inside and outside the curve. In doing this, we exclude the tile
containing c from the calculations. Assume Tk, k = 1, . . . , nm
are the tiles, Pk is the center coordinate of Tk. The difference
of integrals in (18) can be simplified to

∑
k,Pk∈Ro

W ′(c, k)−∑
k,Pk∈Ri

W ′(c, k). As can be seen, we are representing the
features in a tile with their centroid. This approach would
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. a) Original image (266x200), e) initialization of a curve with 144 sub-parts, b-d) maximum cut segmentation with γ = 0.005, f-h) maximum cut
segmentation with γ = 0.1.

also work with spatial terms in the dissimilarity metric. For
dissimilarity measures for which this approach is not suitable,
a random sampling or other representative features such as
median can be used for the integral estimation.

Figures 9 and 10 visually show that the precision of the
segmentation is not much affected by the approximation of
W with W ′. In all experiments in this paper, n and m are
selected around 15 regardless of the image size. We choose
the tiles as squares, where the dimensions of the tiles are sx =
sy = bWidth/15c+ 1. Then,

n =
⌊

Width− 1
sx

⌋
+ 1,m =

⌊
Height− 1

sy

⌋
+ 1 (23)

In some rare cases, due to the large tile size in this approxima-
tion, the curve shrinks and disappears instead of converging
to a segmentation boundary. This problem can be usually
addressed by reducing the tile size.

It might seem surprising that even with quantizing one
dimension of W , still a precise segmentation can be reached.
This can be explained by observing the curve evolution
equation (18). The energy functional given in (5) is symmetric
for the dimensions of W . However, the curve evolution in (18)
does not have the same symmetry. A single point c is compared
to the rest of the points of the image. Coarsening the location
of c would have a significant effect on the end result since even
a neighbor of c might have a totally different feature value.
On the other hand, approximating the integration over the rest

of the points is more robust to errors, and allows us to reduce
the resolution of one dimension of W without significantly
affecting the end segmentation.

Consider a tile Tj of size N2 located within the background
Ro. Let T s

j be the pixels inside this tile and c a point on
the curve. Based on our simple dissimilarity measure, the
normalized dissimilarity of c to Tj is 1

N2

∑
s ‖I(c)− I(T s

j )‖
without quantizing W . Using W ′, an approximation of the
same dissimilarity can be written as:

‖I(c)− 1
N2

∑
s

I(T s
j )‖ =

1
N2

∥∥∥∥∥
∑

s

I(c)− I(T s
j )

∥∥∥∥∥ (24)

As can be seen, if all I(T s
j ) are smaller or larger than I(c),

both dissimilarities–at full resolution and after approximation–
are equal. For most of the tiles, image features do not vary
much within a tile (ignoring outlier points) if the tile is located
inside an homogenous object. This is not the case for tiles
overlapping an object boundary and this might introduce some
inaccuracies into the dissimilarity calculation. We observe in
our experiments that false movements of the curve because
of approximations are usually corrected in the following itera-
tions if c reaches an incorrect region as a result of these errors.
Even though we do not pursue in this paper, size and geometry
of the tiles can be selected more adaptively by analyzing the
image features. Finally, a simple over-segmentation of the
image can be used as the partitioning instead of tiles so that
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6. Normalized maximum cut segmentation for various initializations of the curves with γ = 0.005.

image features are homogenous within each partition.

V. ACTIVE CONTOUR VS GRAPH PARTITIONING

Pairwise (dis)similarity-based cost functions we introduced
in this paper have been commonly used within the graph
partitioning framework. One of the common techniques for
minimizing the cost functions in GPM is by finding the ap-
propriate clusters (regions) of graph nodes (e.g. pixels). Others
include finding cycles (closed contours) on which a certain
cost function is minimized [16]. A popular technique for
clustering graph nodes is using the graph spectrum as proposed
by normalized cuts [11] and average cut [13] methods.

Several GPM methods [21, 16], which are edge-based,
compare their methods to edge-based ACM and pointed out
the advantages of their global minimization properties. Our
technique (GPAC) can be classified as a region-based ACM.
There are several advantages of region-based ACM compared
to spectral GPM.

• Due to the computational efficiency reasons, spectral
GPM limits the similarity neighborhood size. By limiting
the neighborhood where the (dis)similarity measure is
calculated, GPM makes assumptions and simplifications
to the problem at hand and associated segmentation cost
functions. This approach may lead to undesirable results
such as over-segmentation of large homogenous regions.
In GPAC, there is no need to impose neighborhood size
limitations that might affect the segmentation quality.

• The evolution of curves creates an iterative process.
During the evolution, various conditions can be checked
and considered so that the curve’s evolution is adjusted
accordingly. This introduces added flexibility to our
framework. We utilized this property of curve evolution
(a) when we added the curvature-based smoothing term
in (20), and (b) when we introduced area normalization
in (21). We demonstrate in Section VIII-A that iterative
nature of the curve evolution can be used to integrate
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edge information. While difficult, it is also possible to
integrate other types of domain knowledge originating
from the problem at hand.

GPAC is a curve evolution method that incorporates the
advantages of pairwise similarity metrics that are commonly
used in GPM. The performance and characteristics of these
cost functions are rigorously analyzed both analytically us-
ing statistical models and empirically on different classes of
images [22] (see [22] for more references on this topic).
In contrast, the performance of region-based variational and
active contour methods have only been demonstrated on a
limited number of images, and we are not aware of any
detailed analysis of the corresponding cost functions.

A. Analysis of the Behavior of Normalized Cuts with Increas-
ing Similarity Neighborhood Size

Normalized cuts method [11] is based on finding the second
smallest eigenvalue and corresponding eigenvector of the
matrix D−1/2(D − W )D−1/2, where W is the similarity
matrix and D is a diagonal matrix with the diagonals di =∑

j w(i, j). Efficient solution of this problem requires that the
matrix is sparse. For this purpose, normalized cuts method
restrict the similarities within small neighborhoods such that
w(si, sj) = 0 if ‖si − sj‖ > R, where ‖.‖ is the spatial
distance and R is a threshold, eg. 20 pixels. As we will show,
this limitation, which is motivated by computational concerns,
may lead to undesirable results and over-segmentation of large
homogenous areas.

Consider the segmentation (bi-partitioning) results in Fig.
7. For normalized cuts implementation we use the binary-
only software provided by its authors at [23]. Figures 7(c-e)
show normalized cut bi-partitioning when R is equal to 20,
40, and 80 pixels and image size is 253 × 187. The default
of the software is set to R = 20. Increasing the value of R
would bring the implementation closer to the solution of the
original cost function. Fig. 7(e) shows normalized cut solution
for R = 80. We can see that the homogenous background
(sky) and the foreground are better separated. This shows that
restricting R to 20 changes the result and diverts from the
original segmentation cost function. On the other other hand,
increasing the neighborhood size R reduces the sparseness of
the similarity matrix and implementations become unpractical.
For R = 80, it takes over 1GB memory and 25 minutes at
100% CPU load on a pentium 4 2GHz workstation.

Our purpose in this section is not to compare GPAC and
normalized cuts, but to point out an important behavior of
normalized cuts. GPAC solution to the same problem is given
in Fig. 7(b). Since GPAC does not restrict the (dis)similarities
to a neighborhood, the result is similar to the normalized cut
solution with R = 80 given in Fig. 7(e). GPAC implementation
takes between 5 to 30 seconds depending on the initial location
of the curves and allocate less than 50MB memory using our
unoptimized implementation written in C#. We should note
that there are more recent papers by Sharon et al. [24, 25] and
Fowlkes et al. [26] that propose efficient techniques for the
graph partitioning based segmentation.

VI. CURVE EVOLUTION FOR OTHER PAIRWISE
SIMILARITY BASED COST FUNCTIONS

One of the advantages of our variational framework is that
the theory developed so far (including the implementation
issues that are discussed in Section IV) can be easily adapted
and applied to other cost functions that are based on pairwise
(dis)similarities. To demonstrate this aspect of our framework,
we now derive curve evolution equations for various GPM-
based cost functions that address several different problems.
References to GPM such as average cut and normalized cut
are used to indicate the cost functions associated with these
methods, but not to refer to the GPM-based solutions of
these problems. This section shows that the proposed curve
evolution framework that we introduced in this paper is general
and not specific to a certain cost function.

A. Curve Evolution based on Boundary-normalized Cut

Boundary-normalized cut that we will introduce here is a
way of normalizing the cost function by the boundary length
between Ri and Ro. Recall that the maximum cut criteria
favors having a large number of connections across the cut,
which corresponds to a longer boundary length. So, it might be
of interest to investigate a boundary-normalized cost function.
Boundary-length normalization is also used by several GPM
[16, 14]. We can write the corresponding cost function as:

E =

∫∫
Ri(C)

∫∫
Ro(C)

w(p1, p2)dp1dp2
∫ 1

0
|Cq(q)|dq

(25)

Let K =
∫∫

Ri(C)

∫∫
Ro(C)

w(p1, p2)dp1dp2 and L =∫ 1

0
|Cq(q)|dq. The first variation of E = K/L can be cal-

culated as E′ = (K ′L−KL′)/L2. We already calculated K ′

in Section II. The solution of L′ is previously studied [27]
and it can be shown that ∂L/∂t =

∮
C

〈
Ct, κ ~N

〉
ds. Based on

these calculations, the evolution equation that maximizes (25)
can be written as:

∂C

∂t
=

1
L

[(∫∫

Ro

w(c, p)dp−
∫∫

Ri

w(c, p)dp

)
− K

L
κ

]
~N

(26)
The boundary length L is available during each reinitialization
of the narrow band used in Level Set methods (See Section
VII for more information). Calculating K can be expensive
on the full image grid, but this value can be approximated on
a low resolution grid for computational efficiency.

This result seems to be conceptually similar to the idea of
introducing a curvature-based component as done in (20). On
the other hand, the effects of the terms such as L and K are
not clear. In the previous section, boundary-based constraint is
introduced as an additional term in the cost function, whereas
in (25) the cost function is normalized by the curve length.
We can also write a version of (26) that is normalized by area:

∂C

∂t
=

1
L

(
1

Ao

∫∫

Ro

w(c, p)dp− 1
Ai

∫∫

Ri

w(c, p)dp

)
~N

−K

L2
κ ~N

(27)
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(a) (b) GPAC (c) 20 pixel neighborhood (d) 40 pixel neighborhood (e) 80 pixel neighborhood

Fig. 7. a) Original image, b) GPAC bi-partitioning, c) normalized Cuts bi-partitioning when neighborhoods are limited to 20 pixels, d) normalized Cuts
bi-partitioning when neighborhoods are limited to 40 pixels, e) normalized Cuts bi-partitioning when neighborhoods are limited to 80 pixels.

B. Curve Evolution based on Average Cut Criterion

In this section we find the descent equation for the average
cut cost function:

Acut(A,B) =
cut(A,B)

|A| +
cut(A,B)
|B| (28)

This cost function can be written in continuous domain as:

E =
K∫

Ri
dX

+
K∫

Ro
dX

=
K

Ai
+

K

Ao
(29)

where K is defined in previous subsection and X is a point
in 2-D. Note that the integrations in the denominator can also
be done over a function f(X), which might contain modeling
information about the objects in the image.

Following a similar calculation as in Section VI-A, we can
see that E′ = (K ′Ai − KA′i)/A

2
i + (K ′Ao − KA′o)/A

2
o.

We calculated K ′ in Section II. A′i and A′o can also be
calculated as special cases of (13) where G(X) = 1. This
gives ∂Ai/∂t =

∮
C

〈
Ct, ~N

〉
ds. For Ao the normal vector is

in the opposite direction, which introduces a minus sign. The
combined flow equation can then be written as:

∂C

∂t
=

[(
1

Ao
+

1
Ai

)
H +

(
1

A2
o

− 1
A2

i

)
K

]
~N (30)

where H(c) =
∫∫

Ro(C)
w(c, p)dp− ∫∫

Ri(C)
w(c, p)dp

C. Curve Evolution based on Normalized Cut Criterion

One of the popular ways to normalize the cost of a graph
cut is the normalized cut framework. The graph theory version
of this cost function is

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)
assoc(B, V )

(31)

The continuous domain equivalent for this cost functions can
be written as:

E =
K

Bi
+

K

Bo
(32)

where Bi =
∫∫

Ri(C)

∫∫
R

w(p1, p2)dp1dp2 and R corresponds
to the full image domain. Bo is defined similarly. Calculation
of the curve evolution equation is straight forward:

∂C

∂t
=

[(
1

Bo
+

1
Bi

)
H(c) +

(
1

B2
o

− 1
B2

i

)
K · Z(c)

]
~N

(33)
where Z(c) =

∫∫
R

w(c, p)dp.
In this section, we have derived curve evolution equations

for various pairwise similarity based cost functions, each of

which could be useful for different kinds of applications.
A possible future direction is an in depth comparison of
these curve evolutions. This would help us understand the
importance of the various terms that have emerged, namely
L, K, Z, Bi and Bo.

VII. EXPERIMENTAL RESULTS

In this section we present experimental results regarding
the theory developed in the previous sections. Our main target
domain is natural images, which are rich in color and texture.
Unless otherwise stated, normalized maximum cut framework
given in (21) and color features are used in the experiments for
the segmentation of the images. We use opponent color space
in our implementation. The reason for choosing color features
is that it is easier to visualize and evaluate color segmentation
than texture segmentation. We also demonstrate how utilizing
Gabor texture features improves the results compared to using
color features alone. For efficiency purposes, the distances
between feature vectors are calculated using L1 distance
metric.

Our implementation of Level Set Methods uses the narrow
band approach, which is explained in [20, Chapter 7]. The
evolving curve C is embedded into a 2-D function u(x, y),
such that C = {(x, y)|u(x, y) = 0}. This function u is
generated and evolved only on a narrow band around the curve
instead of the full image domain for efficiency purposes. We
select the size of the narrow band as 2 pixels wide and the
size of the land mine area as 1 pixels wide at both sides of
the curve. When the curve reaches the land mine area, narrow
band is regenerated from the current curve and the values of
u are recalculated on the new narrow band. Even though the
specific choice of u mostly does not effect the curve evolution,
a popular choice for u is the signed distance function, where
each point in the narrow band is assigned a value based on
their signed distance from the curve (negative if inside the
curve, positive otherwise). Since we are using a very narrow
narrow band, we use a different and simpler strategy for the
reinitialization of u. We start with the curve and grow the
narrow band layer by layer by using the 4-neighbors. First
layer consists of the 4-neighbors of the curve points. The
second layer is the 4-neighbors of the first layer, etc. Moving
from one layer to the next, we increment (decrement) the value
of u by 1. The convergence criterion for the curve evolution is
also connected to the narrow band approach. Convergence is
achieved if the narrow band is not reinitialized for n iterations.
This means that the curve moved only within the narrow
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Segmentation of an arterial tree image. a) Original image, b) curve
initialization, c) curve is evolving, d) segmentation boundary, e) segmented
background, f) segmented foreground.

band during these iterations. In our experiments, n is chosen
between 30 and 50.

Fig. 8 shows segmentation of a gray scale intensity image of
an arterial tree. Segmentation of this image of size 183× 163
takes less than 5 seconds on a Pentium 4 2.0 GHertz computer
using our unoptimized code written in C#.

Fig. 9 and 10 show foreground/background segmentation on
variety of images. Image resolutions are reduced to 300×200
from their original sizes before segmentation. As can be seen
from the figures, regions are precisely segmented despite the
fact that we are using the fast scheme from Section IV. In these
experiments and in the following ones, all parameters are fixed
and images are segmented automatically without any manual
intervention. Even though this kind of bi-partitioning shouldn’t
be thought of as a full segmentation, it has many applications
in various fields ranging from content-based image retrieval to
segmentation of biological or medical images.

Color features by themselves might not be able to segment
natural images properly. These type of images are usually rich
in texture and using texture features will improve segmentation
results. Fig. 11 shows a comparison of segmentation results
using only color features, only texture features and a combi-
nation of color and texture features on a bear image. Color
features by themselves are not able to extract the boundaries
due to the color changes within the head area. On the other
hand, the texture of the fur helps finding the precise boundary
if texture features are utilized. To calculate the texture features,
we filter the image by Gabor filters [28] tuned to certain scales
and orientations. In Fig. 11, features are calculated at 3 scales
and 6 orientations. In Fig. 11(d), color and texture features
are combined for the segmentation. We do this by creating a
feature vector [α~T (1−α)~C]T , where ~T is the texture feature
vector normalized by the average of all the texture feature
values and ~C is the color feature vector normalized similarly.
α is the weighting between color and texture features, which
is selected as 0.7 in Fig. 11(d).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9. Foreground/Background segmentation. First column shows the
original images. Second and third columns correspond to foreground and
background.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Foreground/Background segmentation. First column shows the
original images. Second and third columns correspond to foreground and
background.
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(a) (b) (c) (d)

Fig. 11. Demonstration of improvements using texture feature vectors. a) Original image, b) color segmentation, c) texture segmentation using Gabor texture
features at 3 scales and 6 orientations, d) segmentation using texture and color features. Texture features weighted 70% and color features 30%.

VIII. DISCUSSIONS AND CONCLUSIONS

A. Strategies for Integration of Edge Information

We have discussed region-based strategies for segmentation.
It is often desirable to integrate the edge information to extract
more precise boundaries. GPAC offers a flexible framework
where edge information can be integrated in three different
ways.

1) Integrating edge information to the curve evolution
framework: ACM most commonly utilize an edge function
g = 1/(1 + |∇Îσ|), where Îσ is the Gaussian smoothed
image. This edge function is generated from the image through
filtering and derivative operators. Another possibility is to
create an edge function from an edge vector field ~S that is
derived from the image [29]. By design, ~S would create a
flow towards the edges. The general characteristic of an edge
function is that it is a decreasing function of the edge strength.
One way of integrating edge information is the following:

∂C

∂t
= g

(∫∫

Ro

w(c, p)dp−
∫∫

Ri

w(c, p)dp

)
~N

−γgκ ~N + α(~S · ~N) ~N

(34)

where α and γ are constants. The effect of multiplying with g
is that the evolution of the curve will slow down or stop when
the curve is aligned with an edge.

2) Integrating edge information to the cost function: An-
other way to integrate edges is by modifying the cost function
for the boundary-normalized cut introduced in (25). Instead
of just normalizing by the boundary length, we can also
normalize by the boundary length weighted by the edge
function (a similar normalization is also proposed in [16]).

E =

∫∫
Ri(C)

∫∫
Ro(C)

w(p1, p2)dp1dp2
∫ 1

0
g(C)|Cq(q)|dq

(35)

Let L2 =
∫ 1

0
g(C)|Cq(q)|dq. The solution of this cost function

is similar to the solution of (25). The only difference is that L
is replaced by L2 and the first variation of L is replaced by L′2.
First variation of L2 has been derived in [1, Appendix B] and is
equal to ∂L2/∂t =

∮
C

〈
Ct, (∇g · ~N + gκ) ~N

〉
ds. Based on

these calculations, the corresponding evolution equation can

be written as:

∂C

∂t
=

1
L2

(∫∫

Ro(C)

w(c, p)dp−
∫∫

Ri(C)

w(c, p)dp

)
~N

−K

L2
2

(
gκ +∇g · ~N

)
~N

(36)
3) Integrating edge information to the (dis)similarity mea-

sure: A third way of using edge information is by utilizing
it when defining the similarities between pixels, w(i, j). This
approach can be easily applied to our framework considering
that the curve evolution is independent of the (dis)similarity
measure. In [30] it has been proposed that, if there are strong
edges along a line connecting two pixels (intervening contour),
these pixels probably belong to different regions and should be
labeled as dissimilar. So, edge information can be integrated
by reducing the pairwise similarity of such pixels.

B. Conclusion
In this paper we presented a generic region-based seg-

mentation method, graph partitioning active contours (GPAC),
using color and texture features. This method is based on
defining a dissimilarity metric at the pixel level and finding the
optimum partitioning of the image that maximizes the dissim-
ilarities across the boundary. We have shown connections to
graph partitioning methods (GPM) and derived curve evolution
equations for various complex region-based segmentation cost
functions. These segmentation cost functions include mini-
mum and maximum cut frameworks and area and boundary
normalized versions of these.

Our proposed method, GPAC, is based on pairwise dissim-
ilarities between pixels. The method is quite flexible since the
dissimilarity metric can be adapted to the application at hand
or to the domain knowledge. This is different than other region
based variational methods where analysis is done at the region
level.

Unfortunately, direct computations of dissimilarities and
region integrals in (21) bring unreasonable computational
complexity and memory requirements. To address this issue,
we proposed a fast method for implementing the curve evo-
lution. This method is based on reducing the resolution of
one dimension of the dissimilarity matrix W . Despite the
approximation, we observe that precision of the segmentation
is not lost.

We have shown promising experimental results for the bi-
partitioning of the image into foreground and background
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regions. The experimental results support the theory we devel-
oped in this paper. We also discussed different strategies for
integrating edges both from ACM and GPM point of views.

As future work, we plan to evaluate normalized maximum
cut, various region-based active contour methods, and the
methods we introduced in Sections VI and their GPM equiv-
alents.
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APPENDIX

In this section we calculate the first variation for the
following functional with respect to t:

M =
∮

C

〈
~S, ~N

〉
ds (37)

where ∇ · ~S = G as defined in Section II. Let ~S = [S1 S2]T .
M is then equal to:

M =
∫ 1

0

〈[
S1

S2

]
, ‖~Cp‖ ~N

〉
dp (38)

where p is a parametrization of the closed curve ~C. Remember
that ~Ct = [xt yt]T , ~Cp = [xp yp]T and ‖~Cp‖ ~N = [−yp xp]T .
The first variation can be written as:

∂M

∂t
=

∫ 1

0

〈[ ∇S1 · ~Ct

∇S2 · ~Ct

]
,

[ −yp

xp

]〉
dp

+
∫ 1

0

〈[
S1

S2

]
,

[ −ypt

xpt

]〉
dp

Integrating by parts:

∂M

∂t
=

∫ 1

0

〈[ ∇S1 · ~Ct

∇S2 · ~Ct

]
,

[ −yp

xp

]〉
dp

−
∫ 1

0

〈[
S1

p

S2
p

]
,

[ −yt

xt

]〉
dp

We rewrite the scalar product within the second integral:

∂M

∂t
=

∫ 1

0

〈[ ∇S1 · ~Ct

∇S2 · ~Ct

]
,

[ −yp

xp

]〉
dp

−
∫ 1

0

〈[ ∇S2 · ~Cp

−∇S1 · ~Cp

]
, ~Ct

〉
dp

After opening the scalar products and rearranging terms:

∂M

∂t
=

∫ 1

0

〈[ −ypS
1
x +©©©xpS

2
x −©©©xpS

2
x − ypS

2
y

−©©©ypS
1
y + xpS

2
y + xpS

1
x +©©©ypS

1
y

]
, ~Ct

〉
dp

This is equal to:

∂M

∂t
=

∫ 1

0

〈
(S1

x + S2
y)

[ −yp

xp

]
, ~Ct

〉
dp

=
∫ 1

0

〈
(∇ · ~S)‖~Cp‖ ~N, ~Ct

〉
dp

=
∮

C

〈
G ~N, ~Ct

〉
ds
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