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ABSTRACT

In this paper, we propose an affine-invariant method
for describing and matching curves. This is important
since affine transformations are often used to model
perspective distortions. More specifically, we propose
a new definition of the shape of a curve that character-
izes a curve independently of the effects introduced by
affine distortions. By combining this definition with a
rotation-invariant shape descriptor, we show how it is
possible to describe a curve in an intrinsically affine-
invariant manner. To validate our procedure we built
a database of shapes subject to perspective distortions
and plotted the precision-recall curve for this dataset.
Finally an application of our method is shown in the
context of wide baseline matching.

1 Introduction

It is trivial to state that shape is an important visual
feature in computer vision. This naturally follows since
human beings greatly rely on shape to recognize ob-
jects. Shape description techniques can be classified
broadly into contour-based ones and region-based ones
[1, 2]. In the former, only the contour of a region is
used for extracting its shape features, whereas in the
latter, the interior is also used. Several contour-based
features have been proposed in the literature [1, 2]. All
of these involve the description and matching of 2-D
curves that represent shape contours. One of the per-
sisting problems has been the efficient description and
matching of 2-D curves in the presence of perspective
distortion. Many existing methods are RST (rotation,
scaling, and translation) invariant, but fail under per-
spective distortion.

Why is affine invariance important? The goal of
this paper is to study the problem of matching curves
between views related by perspective distortion. It is
well known that a perspective transformation can be
approximated by an affine transformation as long as the
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imaged object is planar and the camera optical center
is far enough from such plane [3]. This explains why
we want to develop a methodology to compare curves
related by an affine transformation.

In this paper, we propose a method that will lead us
to a compact and intrinsically affine invariant shape de-
scriptor that is shown to be effective in matching curves
that are affine equivalent. Previously, the curvature
scale space (CSS) descriptor [4] of MPEG-7 has been
shown to be robust under perspective distortion. How-
ever, this descriptor is not intrinsically affine invariant.
In order to achieve robustness to affine transformation,
it uses the affine length curve parametrization method
that requires derivatives up to the fourth order. In a
digital implementation, higher-order derivatives (a) are
difficult to implement, and (b) may cause instability in
the presence of noise. Our method merits from not
using any derivatives.

2 Affine Invariant Curve Matching

2.1 Describing The Shape of a Curve

Consider a planar curve Γ represented by the set of
points X = {x1, . . . ,xn}. What is the shape of Γ?
Kendall [5] gave the following definition of shape:

[shape is] what is left of the configuration [of

a set of points] after the effects of translation,

rotation and scaling have been factored out.

Unfortunately this definition does not allow us to deal
with curves that are subject to affine transformations,
since in these cases it is necessary to factor out not only
rotation, scaling and translation but also shear.

Consider a Jordan curve Γ that is the boundary
of the domain Ω ⊂ R2: to extend Kendall’s notion of
shape we introduce the following quantities:

• Let V (Ω) def=
∫
Ω

dx2 be the area of Ω, where dx2

is the infinitesimal area element.

• Let m(Ω) def= 1
V (Ω)

∫
Ω

x dx2 be the centroid of Ω.



• Let Σ(Ω) def= 1
V (Ω)

∫
Ω

[x−m(Ω)] [x−m(Ω)]T dx2

be the covariance of Ω.

We now have all the ingredients to define the shape of
a Jordan curve:

Definition 1 Let Γ be a Jordan curve. The shape of
Γ is defined as:

S(Γ)
def
=

{
s ∈ R2 : s = Σ(Ω)−

1
2 [x−m(Ω)] for x ∈ Γ

}

(1)

This definition is important because it allows us to re-
late affine-transformed curves, as stated in the follow-
ing theorem:

Theorem 1 Let Γ1 and Γ2 be two Jordan curves re-
lated by an affine transformation:

Γ2 =
{
x2 ∈ R2 : ∃x1 ∈ Γ1 such that x2 = Ax1 + b

}

where A ∈ R2×2 is a non-singular matrix and b ∈ R2.
Then the shapes of Γ1 and Γ2 are geometrically con-
gruent via a 2-dimensional rotation.

Sketch of the Proof. Let Γ1 = ∂Ω1 and Γ2 = ∂Ω2. We
want to show that the matrix R

def= Σ(Ω1)
1
2 AT Σ(Ω2)−

1
2

establishes the congruence relation between S(Ω1) and
S(Ω2). The first step consists in verifying that R is
actually a rotation matrix. Then the proof is completed
observing that (a) for any s1 ∈ S(Γ1) there exits s2 ∈
S(Γ2) such that s1 = Rs2 and that (b) for any s2 ∈
S(Γ2) there exits s1 ∈ S(Γ1) such that s2 = R−1s1.
The details of the proof can be found in [6].

In other words we can say that the notion of shape
we propose is unique modulo a rotation. Therefore,
in order to describe a curve Γ in an affine-invariant
manner, we only need to describe its shape S(Γ) in a
rotation-invariant manner. This is made feasible by the
abundance of rotation-invariant shape descriptors.

2.2 A Modified Shape Matrix Descriptor

With regard to complexity, we choose not to use an in-
trinsically rotation-invariant shape descriptor. Instead,
we obtain a partial invariance by using a combination of
a shape matrix-based descriptor and the distance func-
tion used to compare curves. Because of quantization
effects, we cannot achieve a true rotation-invariance
with this descriptor. However, this descriptor allows
us to represent a curve compactly and to easily cope
with the problems posed by curve sampling and reflec-
tion.

Shape matrices have been used in the past to rep-
resent shapes in an RST-invariant manner. Goshtasby

[7] proposed a shape matrix built from a circular quan-
tization grid. A polar raster of concentric circles and
radial lines is positioned in the center of mass of the
shape (Fig. 1(b)). The maximum radius of the shape is
equal to the radius of the circle. Rotation invariance is
achieved by aligning the axis of the coordinate system
along the maximum radial line OA. The binary value of
the shape is sampled at the intersections of the circles
and radial lines. The shape matrix is formed so that the
circles correspond to the columns and the radial lines
correspond to the rows. Taza and Suen [8] compare
two shapes by comparing the corresponding shape ma-
trices. The matrix entries are weighted for more objec-
tive comparison because the sampling density is higher
at the center of the circle than at the periphery. Parui
et al. [9] implicitly impose this weighting by using the
relative areas of the shape contained in concentric rings
around the shape center of mass.

We use a variation of Goshtasby’s method [7]. Given
any curve Γ (Fig. 1(a)), we arrive at its shape S(Γ)
(Fig. 1(c)) using Definition 1. We then use a non-
uniform circular grid (Fig. 1(d)) to build the shape
matrix. We sample uniformly along the angular coordi-
nates and non-uniformly along the radial lines so that
the area of each sector is independent of its distance
from the center. The grid is centered at the center of
mass O of the shape and the maximum radius is equal
to the distance of the furthest point of the shape from
O. Note that we do not require the axis to be aligned
along the maximum radial line.

Suppose the grid has NR radial divisions and Nθ

angular divisions. Using this grid, we build a binary
matrix D ∈ {0, 1}NR×Nθ where the entry Di,j is set to
one if and only if the shape S(Γ) intersects the sector
corresponding to the ith radial division and to the jth

angular division. The coordinate axis is arbitrary and
the sampling direction is counter-clockwise. The ma-
trix D can be stored using NRNθ bits. The distance1

between two curve descriptors A and B is computed
using the following function:

d(A,B) = min
−Nθ+1≤i≤Nθ−1

NR∑

h=1

Nθ∑

k=1

Ah,k XOR Bh,<k−i>Nθ

where the notation < · >Nθ
denotes circular shift. The

negative circular shift indices indicate a reversal in the
sampling direction (clockwise) and thus account for re-
flections. The distance function counts the minimum
number of different bits between A and all the possible
column circular shifts of B. The larger is the number of
angular divisions the greater is the degree of invariance

1With a little abuse of language we will call d distance even
though it does not always satisfy the triangle inequality.
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Fig. 1. (a) A closed curve; (b) uniform circular quantiza-
tion grid; (c) The shape corresponding to the closed curve
(having removed the effect of affine transformation); (d)
non-uniform circular quantization grid (all sectors have the
same area).

with respect to rotations and reflections. In our exper-
iments we used a sampling grid with 12 radial divisions
and 15 angular divisions.

3 Experimental Results

The MPEG-7 Similarity test dataset [10] has been widely
used to evaluate the performance of shape descriptors.
However, it does not contain many shapes with per-
spective distortion and hence is not suitable for eval-
uating affine-invariant descriptors. In order to fill this
void, we created the Multiview Curve Dataset (MCD)
to evaluate descriptors intended for comparing curves
under perspective distortion.

3.1 The Multiview Curve Dataset

This dataset2 comprises 40 shape categories, each cor-
responding to a shape drawn from an MPEG-7 shape
category. Each category in the new dataset contains 14
curve samples that correspond to different perspective
distortions of the original shape. The original MPEG-7
shapes were printed on white paper and 7 samples were
taken using a digital camera from various angles. The
contours were extracted from the iso-intensity level set
decomposition of the images [11]. Adding random ro-
tations and reflections to these samples, the number of
samples in each category is doubled to 14. Fig. 2(a)
shows the samples from the category “key”.

2To obtain this dataset please send an email to {sitaram,
zuliani}@ece.ucsb.edu
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Fig. 2. (a) The samples for the category “key” in the Mul-
tiview Curve Dataset; (b) Precision-Recall over the MCD.

3.2 Precision vs. Recall Curve

The proposed method is evaluated by plotting a pre-
cision vs. recall curve over the above dataset. Each
curve Q is used in turn as the query. Let A(Q) denote
the set of T retrievals (based on the smallest distances
from Q in the descriptor space) and R(Q), the set of
14 images in the dataset relevant to Q. The preci-
sion is defined by P (Q) = |A(Q)∩R(Q)|

|A(Q)| , and the recall

by C(Q) = |A(Q)∩R(Q)|
|R(Q)| , where |·| denotes cardinality.

Fig. 2(b) shows the precision-recall curve for the pro-
posed descriptor. The curve is plotted by averaging
precision and recall over all Q, for different values of T
(shown below the curve).

When T = 2, the precision is higher than 99%. This
means that in more than 99% of cases, the best match
to the query (i.e. the second retrieval3) is from the same
category. When T = 14, i.e. the number of retrievals is
equal to the number of samples per category, the pre-
cision is about 80% at a recall of 80%. This suggests
that our approach is effective in matching curves de-
spite perspective distortion. In the future, we intend
to use the MCD to compare our method with the CSS
approach (using affine length curve parametrization) in
terms of both performance under perspective distortion
and complexity.

3.3 Finding Wide Baseline Correspondences

Establishing correspondences between images taken
from different points of view is a central problem in
computer vision. Our approach can be used to match
planar curves extracted from image pairs related by a
perspective distortion. Fig. 3 shows the best 15 matches
between the set of curves (whose length is larger than
a certain threshold) extracted from the “Graffiti” pair.
Only two curves are mismatched. However, in this spe-
cific example such mismatches are due to the fact that
not all the curves extracted from one image have their
counterpart in the other image. Note also that the mis-
matched curves are very similar in shape.

3The first retrieval is always the query itself (zero distance).
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Fig. 3. (a) Two views of the “Graffiti” scene. The lines connect corresponding curves and the arrows indicate the curve
mismatches; (b) Zoomed versions of some of the matches and one mismatch (bottom right).

4 Conclusions

We have proposed a method for describing and match-
ing curves in an affine-invariant way. This is important
because affine transformation is often used to model
perspective distortion. The novelty of our approach is
a new definition for the shape of a planar curve that
is independent of affine transformations modulo rota-
tion. We achieve affine-invariant curve matching by
combining this concept with a modified shape matrix
descriptor and a rotation-invariant distance function.

To evaluate our method, we built a Multiview Curve
Dataset (MCD) consisting of curves under different
perspective distortions. The retrieval performance was
visualized as a precision-recall curve. Furthermore, we
demonstrate the application of this method in the con-
text of wide baseline matching.

In the future, we intend to make the approach truly
affine-invariant by eliminating the quantization effects
of the shape matrix descriptor. We plan to achieve
this goal by combining our shape extraction approach
with an intrinsically rotation-invariant descriptor such
as the CSS descriptor. However, preliminary results
indicate that the CSS descriptor4 does not improve the
performance significantly.
Acknowledgement: We would like to thank prof. Shiv
Chandrasekaran for helpful discussions, and Dr. Miroslaw
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4The CSS descriptor was computed using the implementation
provided in the MPEG-7 XM [12].
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[12] Institute for Integrated Systems http://www.lis.ei.
tum.de/research/bv/topics/mmdb/e_mpeg7.html,
Feb 2004.


