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Abstract 
 
Texture remains largely underutilized in the analysis 

of remote sensed datasets compared to descriptors 
based on the orthogonal spectral dimension. This paper 
describes our recent efforts towards using texture to 
automate the annotation of remote sensed imagery. Two 
applications are described that use the homogeneous 
texture descriptor recently standardized by MPEG-7. In 
the first, higher-level access to remote sensed imagery 
is enabled by using the texture descriptor to model geo-
spatial objects. In particular, the common textures, or 
texture motifs, are characterized as Gaussian mixtures 
in the high-dimensional feature space. In the second 
application, the texture descriptor is used to label 
regions in a large collection of aerial videography in a 
perceptually meaningful way. Gaussian mixtures are 
used to model the distribution of feature vectors for a 
variety of semantic classes. Frame level similarity 
retrieval based on semantic layout and semantic 
histogram is enabled by modeling the spatial 
arrangement of the labeled regions as a Markov 
random field. 

 

1. Introduction 
 
Remote sensed imagery is accumulating at an 

increased rate due to advances in sensors, storage, and 
other technologies. The full value of this data is not 
being realized, however, since there has not been similar 
progress in automated analysis. A fundamental 
challenge to managing large repositories of remote 
sensed imagery remains automating the annotation 
process. Automated techniques are urgently needed 
since manual annotation is prohibitively time consuming 
and expensive. 

There has been noted success over the past few 
decades in using spectral information to label remote 
sensed imagery at the pixel level. These approaches are 
limited however since many land cover types appear 
similar through such a small aperture. Spatial context 
must be incorporated. 

Spatial context at the finest, or pixel, scale can be 
considered as the low-level image primitive of texture. 
Texture-based analysis remains largely underutilized, 
however, in the analysis of remote sensed imagery. This 
paper describes our recent work on using texture for the 
automated annotation of large collections of remote 

sensed data. In particular two applications that use the 
homogeneous texture descriptor recently standardized 
by the MPEG-7 Multimedia Content Descriptor 
Interface [1] are described.  

In the first application, higher-level access to remote 
sensed imagery is enabled by using the descriptor to 
model geo-spatial objects with common characteristic 
textures. These common textures are termed texture 
motifs and are represented as Gaussian mixture models 
(GMM) in the high-dimensional feature space. 
Examples of motifs include the rows of boats and water 
in harbors, and the grass and trees in golf courses. 

In the second application, the descriptor is used to 
label aerial video frames in a perceptually meaningful 
way. Many researchers have worked on the problem of 
content-based image/video retrieval based on 
example/sketch queries. Many of these methods use 
low-level visual features such as color, texture, motion, 
and shape for retrieval [2]. Although this approach is 
convenient for internal representation, it is unfriendly to 
users who are not familiar with the systems since the 
semantics are not captured by low-level features. 
Recently, there have been attempts to bridge this gap by 
representing video content with probabilistic semantic 
models [3]. In the proposed approach, a combination of 
Markov random field (MRF) and Gaussian mixture 
modeling is used for the semantic analysis and 
representation of image/video content. The MRF model 
is reinforced by biasing the Gibbs energy function at 
each site with the class-conditioned feature likelihoods 
obtained using a GMM. The sites for the MRF are 
blocks of pixels, each of which is described by a texture 
descriptor. Similarity retrieval at the frame level is then 
enabled by modeling the spatial arrangement of the 
regions as a Markov random field. 

The rest of the paper is organized as follows. 
Section 2 describes the homogeneous texture descriptor. 
Sections 3 and 4 describe the two applications. And, 
section 5 concludes. 

 

2. Homogeneous texture descriptor 
 
The homogeneous texture descriptor is based on the 

outputs of Gabor filters. The use of Gabor filters is 
motivated by several factors. The Gabor representation 
has been shown to be optimal in the sense of minimizing 
the joint two-dimensional uncertainty in space and 
frequency [4]. These filters can be considered as 



orientation and scale tunable edge and line detectors, 
and the statistics of these micro-features can be used to 
characterize the underlying texture. 

The texture feature vector consists of the first and 
second moments of the filter outputs. 
If ( ) ( )11 , ,, , RSf x y f x y…  are outputs of a filter bank 
tuned to S scales and R orientations then the feature 
vector f is 

[ ]1 111 11 12 12, , , , , , , , ,S S RS RSf µ σ µ σ µ σ µ σ= … … (1) 

where ijµ  and ijσ  are the mean and standard deviation 

of the output of filter ( ),ijf x y respectively. 
The texture feature vector can be used to compute 

the visual similarity between images by defining a 
distance measure on the 2xRxS dimension space. The 
Euclidean distance is commonly used so the distance 
between images (1)I  and ( 2)I  is: 

( ) ( )( ) ( ) ( )1 2 1 2

2
,d I I f f= − .                    (2) 

Figure 1 shows an example of using the texture 
descriptor for query-by-example similarity retrieval. 
The left top tile is used to retrieve similar tiles from a 
large collection of satellite images. The tiles are of a 
freeway. 

Orientation invariant similarity retrieval is possible 
by modifying the distance measure to exploit the 
structure of the feature vector. Specifically, let rf  be 

the feature vector circularly shifted by r orientations. 
Orientation invariant similarity can then be computed 
using the following distance measure: 

( ) ( )( ) ( ) ( )1 2
1 2

2
, minRI rr R

d I I f f
∈

= − . (3) 

Conceptually, this distance function computes the best 
match between rotated versions of the images. Figure 2 
shows an example of orientation invariant similarity 
retrieval. 

Please see [5,6] for more details on the 
homogeneous texture descriptor. An online 
demonstration of similarity retrieval in a large collection 
of aerial images is available at [7]. 

 

3. Geo-spatial object modeling 
 
The texture descriptor has limited application for 

characterizing remote sensed imagery since it is a low-
level feature. This section describes a framework for 
using the descriptor to enable an object-based 
representation [8]. In particular, geo-spatial objects 
consisting of multiple characteristic textures are 
modeled using mixtures of Gaussians. The eventual goal 
is to use the models to locate new object instances. The 
intermediate goal is to estimate the spatial extents of 
known object instances. 

 
 

3.1. Geo-spatial objects and texture motifs 
 
The goal is to model geo-spatial objects that consist 

of characteristic textures but lack 1) consistent 
geometry, 2) well-defined boundaries, and/or 3) well-
defined spatial layouts. Such objects defy traditional 
modeling approaches and include harbors, golf courses, 
and mobile home parks. The focus of the approach is to 
characterize the common textures, or texture motifs, 
such as the rows of boats and water in harbors, or the 
grass and trees in golf courses. 

 
3.2. Gaussian mixture models 

 
Homogeneous texture feature vectors are extracted 

using the Gabor filters described in section 2. These 
vectors are the direct outputs of the filters, not the 
summary vectors consisting of the first two moments 
computed over the image. Thus, there is an RxS 
dimension vector c associated with each pixel. 
Assuming that the pixels in an object class, such as 
harbors, are generated by one of N possible texture 
motifs, modeled as Gaussians, the probability density 
function of c can be expressed as a mixture distribution,  

( ) ( ) ( )
1

|
N

j

p c P j p c j
=

=∑   (4) 

where p(c|j) is the conditional likelihood of the feature c 
being generated by motif j, and P(j) is the prior 
probability of motif j. The number of motifs N along 
with distribution means and covariance matrices are the 
parameters that completely specify the class model. 

The Expectation Maximization algorithm [9] is used 
to estimate the parameters of the Gaussian mixture 
models (GMMs). Since the objects and their constituent 
textures occur at arbitrary orientations, the EM 
algorithm is extended to account for not only the 
unknown mixture memberships but also the unknown 
orientations of the feature vectors [10]. This is 
accomplished by exploiting the structure of the texture 
features in a manner similar to the orientation invariant 
distance measure described in section 2. The EM 
learning is bootstrapped using a K-means algorithm 
similarly modified to account for the unknown texture 
orientations. 

The GMM can be used to label the motifs for an 
object instance. A maximum a posteriori (MAP) 
classifier assigns label i* to a pixel with feature vector c 
according to  

( )[ ]*

1

arg max |
i N

i P i c
≤ ≤

= .          (5) 

The posterior probabilities P(i|c) are computed 
using Bayes’ rule. Figure 3 shows the motif assignments 
for two harbor regions. 

 
 
 



3.3. Estimating spatial extents 
 
As mentioned, the intermediate goal is to use the 

models to estimate the spatial extents of known object 
instances. The Alexandria Digital Library (ADL) [11] at 
UCSB contains an extensive gazetteer that catalogues 
the spatial locations of over 5 million instances of over 
200 types of geo-spatial objects. However, only a single 
point location is available for each instance so that 
extending the gazetteer to include even bounding boxes 
has bee identified by the ADL development team as 
essential for supporting a broader range of spatial 
queries [12]. This can be accomplished by modeling the 
spatial arrangement of the motifs for an object as a 
Markov random field. The model parameters are 
learned from a training set using a Markov Chain Monte 
Carlo approach [13]. The model is then used to 
iteratively grow a bounding box that is initialized inside 
a known object instance using the location information 
available in the gazetteer. Figure 4 shows the bounding 
box used to estimate the spatial extent of a mobile home 
park at every 75 iterations from initialization to 
stopping. The image region outside the manually chosen 
ground truth has been dimmed for clarity. Please see 
[14] for more details on using the models for estimating 
spatial extents. 

 

4. Semantic image labeling using GMMs 
and MRFs 

 
4.1.  Semantic image labeling 

 
Learning the statistical distribution of features in 

each semantic class is the reverse of a classification 
problem. Images (or key frames from videos) from a 
training set are partitioned into blocks, allowing the 
computation of localized features without getting into 
the details of image segmentation, which is still an 
outstanding problem. For each block, the texture feature 
vector is extracted, and a semantic label from a 
predetermined set is manually assigned. Since visually 
similar textures tend to form clusters in a sparse feature 
space and there is a wide variation in visual appearance 
within each semantic class, a GMM is used to model the 
feature distribution conditioned on each class label. 
Suppose that each semantic class can be described by K 
clusters in the feature space. For each class, the 
distribution of features dY R∈  (d=60 in our 
experiments) is modeled as a mixture of K Gaussians, 
with the following density function: 

1

1

1 1( | ) exp ( ) ( )
2(2 ) | |

K
T

m mj mj mj mjd
j mj

P y y yθ α µ µ
π

−

=

 = − − Σ − 
 Σ

∑

     (6) 

where { } 1
, ,

K
m mj mj mj j

θ α µ
=

= Σ  is the parameter set for 

the semantic class m. mjα are the mixture coefficients, 

d
mj Rµ ∈  is the mean of the jth Gaussian, and mjΣ is the 

covariance matrix of the jth Gaussian.  
Using the set of GMMs trained as described above, 

an image block with feature vector y can be classified 
into a semantic class using a maximum likelihood 
classifier. However, since the spatial relationships 
between neighboring blocks is not considered, many 
inconsistent labelings occur. For example, it is possible 
that a “street” block is shown to be surrounded by 
“water” blocks. This problem is addressed by using an 
MRF to model the label distribution. The label of a 
block at site s is modeled as a discrete-valued random 
variable Xs, taking values from the semantic label set 

{1, 2,..., }M=M , and the set of random variables 

{ },sX X s S= ∈  constitutes a random field where S is 
the lattice of image blocks. The random field X is 
modeled as an MRF with a Gibbs distribution [15]: 

( )1( ) U xp x e
Z

−=       (8) 

where x is a realization of X. The Gibbs energy function 
U(x) can be expressed as the sum of clique potential 
functions, 

( ) ( )c
c Q

U x V x
∈

=∑       (9) 

where Q is the set of all cliques in a neighborhood. We 
reinforce the MRF model by incorporating the class-
conditioned feature likelihoods into the energy function, 
as follows:  

( )
s

s s s
s S s N

U x LP LPα β′−
′∈ ∈

 
 = − −
 
 

∑ ∑   (10) 

where log( ( , ))s s s s s sLP p x x′ ′ ′− −=  and 

( )log ( | )
ss s xLP p y θ= . Ns is the set of neighbors of the 

site s, α and β are the weights of sLP  and s sLP ′−  
respectively. 's sLP −  represents the spatial relationship 
between neighboring sites s and s′ where s-s′ indicates 
the direction of neighborhood. sLP  represents the 
conditional probability density of feature vector ys given 
the label sx . ( , )s s s sp x x′ ′−  is the joint probability of 

sx and sx ′  along the direction s-s′ and can be 
approximated with a co-occurrence matrix from the 
labeled training set. For each type of clique s-s′, a co-
occurrence matrix is constructed from the joint 
probabilities ( , )rP i j  between pairs of semantic labels i 
and j in a given direction r. 

In order to simplify the model, a second order pair-
sites neighboring system is used. Each site thus has 
eight neighbors. Four types of cliques are considered, 
wherein s-s′ makes angles of 0, 45, 90, and 135 degrees 
with respect to the x-axis. In any neighborhood, cliques 
along the same direction are considered equivalent. 
Four co-occurrence matrices are constructed along these 
four directions of label distribution.  

 



4.2. Semantic Representation for Retrieval 
 
After the labeling process, the labels of the blocks of 

a given image (or video key frame) are used for 
interpreting its semantic content. This representation of 
an image in terms of the semantic labels of its blocks is 
called its semantic layout. For retrieval purposes, the 
similarity between the query image and each stored 
image has to be measured from their semantic layouts. 
Let the semantic layout of the query image be qX  and 
that of the stored image be IX . In order to improve the 
retrieval performance, a soft classification scheme is 
adopted. For a given image block, the labels with the 
three largest local conditional probabilities are selected 
to represent this block. All these candidate labels are 
stored along with the feature vectors for future retrieval. 
The modified semantic layout similarity between the 
query image and each stored image is given by 

3

3 1 , ,1
1

3 3

2 , ,2 , ,1
1 1

3 3 3

3 , ,3 , ,1 , ,2
1 1 1

( , )

( , ) 1 ( , )

( , ) 1 ( , ) 1 ( , )

q I
j s j s

s S j

q qI I
j s j s s i s

s S j i

q q qI I I
j s j s s i s s i s

s S j i i

S a a x x

a a x x x x

a a x x x x x x

δ

δ δ

δ δ δ

∈ =

∈ = =

∈ = = =

 
 =
 
 
  
 + −     
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∑ ∑

∑ ∑ ∑
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where 1
1 , 1, 2,3

2i ia i−= =  are the weights for different 

label similarities, and ,
q
s jx   is the jth candidate label of 

the query image block at site s.  
In Eq. (12), the similarity measure is computed by 

comparing each candidate label of a query image block 
with all the candidate labels of the corresponding stored 
image block. This approach for image/video similarity 
retrieval is expected perform better than existing 
methods that do not consider the underlying semantics.  

The similarity measure of Eq. (12) is effective only 
when all images are of the same size. In order to 
compare the semantics of images of any size, a semantic 
histogram can be computed for each image. This is 
similar to the image histogram where the inputs are 
semantic labels instead of image intensities. As long as 
the semantic label set is the same, two images can be 
compared using their semantic histograms. 

Figures 5 and 6 show the top four retrieval results 
using two different queries. Figures 5(a) and 6(a) show 
the query images and the corresponding semantic 
layouts. Observe that some of the retrieved images 
appear visually different from the query image, while 
their semantic layouts are similar. For example, in figure 
5, the parking lot in the first retrieved image appears 
dissimilar to that in the query image. Note that this 
cannot result from a low-level feature query. The 
combination of GMM and MRF thus captures the 
semantic layout of a scene effectively.  

 

5. Discussion 
 
This paper describes two applications of using 

texture to annotate remote sensed datasets. In the first 
application, geo-spatial objects are modeled by 
characterizing the distribution of texture motifs using 
Gaussian mixtures. These models are then used to 
estimate the spatial extents of known object instances. 
In the second application, a novel combination of 
GMMs and MRFs is used to model the distribution of 
semantic classes in aerial image/video data. Frame level 
similarity retrieval based on semantic layout and 
semantic histogram is then enabled. 
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Figure 1. Similarity retrieval in a large collection of satellite 
images. The top left tile is the query and the other tiles are 

the most similar with respect to the texture descriptor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Orientation invariant similarity retrieval. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Two harbor regions and corresponding texture motif assignments. 

http://www.alexandria.ucsb.edu/


 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Bounding box for estimating spatial extent of mobile home park every 75 iterations until stopping. 
 
 

   
 

(a) Query image and its semantic layout.      (b) Retrieval results. 
 

Figure 5. Semantic retrieval example #1: The query image contains a parking lot and a street. Observe that the retrieved images 
have the same semantic configurations, although they are visually quite different. 

 
 

   
 

(a) Query image and its semantic layout.    (b) Retrieval results.
 

Figure 6. Semantic retrieval example #2: The query image contains building and city ground.
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