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Abstract

Effectiveness and efficiency are two important concerns
in using multimedia descriptors to search and access
database items. Both are affected by the dimensionality
of the descriptors. While higher dimensionality generally
increases effectiveness, it drastically reduces efficiency of
storage and searching. With regard to effectiveness, rele-
vance feedback is known to be a useful tool to squeeze in-
formation from a descriptor. However, not much has been
done toward enabling relevance feedback computation us-
ing high-dimensional descriptors over a large multimedia
dataset. In this context, we have developed new methods
that enable us to a) reduce the dimensionality of Gabor tex-
ture descriptors without losing on effectiveness, and b) per-
form fast nearest neighbor search based on the information
available during each iteration of a relevance feedback step.
Experimental results are presented on real datasets.

1. Introduction

In content based retrieval, the main task is to find entries
in a multimedia database that are most similar to a given
query object. The volume of the data is typically huge, and
the feature vectors are of high dimensionality. Therefore,
it is in general impractical to store all the extracted feature
vectors in the main memory. Since I/O operations for stor-
age devices are slow, the time spent accessing the feature
vectors overwhelmingly dominates the time complexity of
the search. In databases, indexing is used to narrow the
scope of the search and increase its efficiency. There has
been a considerable amount of work on high-dimensional
indexing [1]. The search procedure is subject to the notori-
ous “curse of dimensionality”, i.e., the search space grows
exponentially with the number of dimensions.

An equally important issue is the effectiveness of the mul-
timedia descriptors. This has been addressed by the content

This research was supported in part by the following grants and
awards: ISCR-LLNL #W-7405-ENG-48, NSF-DLI #IIS-49817432, and
ONR #N00014-01-1-0391.

based retrieval community extensively [2]. While the low-
level features are quite effective in “similarity” retrieval,
they do not capture well the high level semantics. There-
fore, new concepts were introduced to capture image infor-
mation: new similarity metrics, learning similarity metrics,
and on-line learning systems that use relevance feedback
mechanisms to modify the query and/or the similarity com-
putations. A practical system should address concerns about
both efficiency and effectiveness. However, not much has
been done toward enabling, for example, relevance feed-
back computations using high-dimensional index structures.
In this context, we have recently developed new methods
that can support the system implementation.

A widely used texture descriptor, which is part of the
MPEG-7 standard [2], is that computed using multiscale
Gabor filters. However, the high dimensionality and com-
putational complexity of this descriptor adversely affect the
performance as well as the storage, computation, and index-
ing requirements of a content-based retrieval system. We
developed a modified texture descriptor that has compara-
ble performance, but nearly half the dimensionality of the
MPEG-7 descriptor. An adaptive nearest neighbor compu-
tation method that makes use of the information available
during each iteration of a relevance feedback step, is pro-
posed to speed up the search. The adaptive nearest neigh-
bor computation enables retrieval systems to scale to a large
number (few hundred thousands and higher) of items with-
out compromising on search effectiveness, and allows data
mining applications.

2. Dimensionality Reduction of MPEG-7 Tex-
ture Features

An image can be considered to be a mosaic of textures
and texture features associated with the regions can be used
to index the image data for searching and browsing. A
Gabor-based homogeneous texture descriptor [3] has been
adopted by the MPEG-7 standard for its effectiveness and
efficiency. Gabor filters can be considered to be orientation
and scale tunable edge and line detectors, and the statistics
of these micro-features can be used to characterize the un-
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Figure 1: (a) Rice pdf; (b) Precision vs. Recall curves over the Brodatz dataset; (c) Histogram of the values along arbitrary
dimension offµσ.

derlying texture. The texture descriptor fors scales andk
orientations is given by

fµσ = [µ00, σ00, ..., µs−1,k−1, σs−1,k−1, µI , σI ] (1)

whereµmn andσmn are the mean and standard deviation of
the Gabor filter outputs (taking absolute values, by default)
at scalem and orientationn. For an input texture imageI,
µI andσI are the mean and standard deviation of the pixel
intensities of the image. Note that the dimensionality offµσ

is 2sk + 2. The format of (1) for the texture descriptor is
driven by the implicit assumption that the filter outputs have
Gaussian-like distributions.

It is shown that the Gabor filter outputs have a Rice distri-

bution [4], given byfR(r) = r
σ2 exp

(
− r2+A2

0
2σ2

)
I0

(
A0r
σ2

)
,

whereA0 andσ are the parameters andI0(x) is the zero-
order modified Bessel function of the first kind. The Rice
pdf can vary from a Rayleigh pdf for smallA0 (A0 ≈ 0)
to an approximate Gaussian pdf for largeA0 (A0 À σ),
as shown in Figure 1(a). The latter case occurs when the
texture is well-defined and periodic, with a highly peaked
frequency component atω0. The filter outputs tend to have
a Rayleigh pdf when the frequency components of the tex-
ture are weak in the vicinity ofω0. The filter bank used
for computing the texture descriptor has predefined center
frequencies. Over a wide range of textures, the probability
that a given texture has a strong component at a specified
center frequency, is small. Hence, we claim [5] that the
Rayleigh pdf model for filter output distributions is valid
with a higher probability than the Gaussian pdf model that
inspires the descriptor in (1).

The Rayleigh pdf,p(z) = z
γ2 exp

(
− z2

2γ2

)
has only one

parameterγ. Therefore, instead of (1), we propose the fol-
lowing texture descriptor with dimensionalitysk + 2,

fγ = [γ00, γ01, ..., γs−1,k−1, µI , σI ] (2)

whereγmn is the Rayleigh parameter of the Gabor filter out-
put distribution. Ifzi are corresponding filter outputs, and

N is the number of output coefficients, the ML estimate of

the Rayleigh parameter is given by:γ2
mn = 1

2N

N∑
i=1

|zi|2.

Based on the estimates of the Gaussian parameters in (1),

µmn = 1
N

N∑
i=1

|zi| andσ2
mn = 1

N

N∑
i=1

|zi|2−µ2
mn, it is it is

easy to show thatγ2
mn = 1

2

(
µ2

mn + σ2
mn

)
. Thus we can

compute the new features from the original Gabor features
without having to repeat the computationally expensive fil-
tering step. Also, we can see that, for large values ofN , fγ

needs 50% fewer additions in its computation thanfµσ.

2.1 Experiments

We compare the similarity retrieval performance offµσ

and fγ on the Brodatz texture dataset. The dimensional-
ity of fµσ is 62 and that offγ is 32. The dataset consists
of 1856 images (16 from each of 116 texture classes). Let
A(q) denote the set ofT retrievals (based on the smallestL1

distances from textureq in the descriptor space) andR(q),
the set of images in the dataset relevant toq. The preci-
sion is defined byP (q) = |A(q)∩R(q)|

|A(q)| , and therecall by

C(q) = |A(q)∩R(q)|
|R(q)| , where|·| denotes cardinality. Fig. 1(b)

shows the precision vs. recall curves for each descriptor
and normalization method. The curves are plotted by av-
eraging precision and recall over allq, for different values
of T (shown below the curves). While the dimensionality
of fγ is smaller by almost 50% (for largesk), the drop in
precision (equivalently, the increase in error rate) is below
3% for a wide range ofT . This supports our claim that the
Rayleigh pdf assumption for filter outputs is valid with high
probability when we consider a wide range of textures.

The distance metric used for measuring visual dissimi-
larity is more sensitive in dimensions with larger dynamic
ranges. Since this is undesirable, the descriptors are normal-
ized so that each dimension has the same dynamic range.
Over a large dataset, the values along each dimension (other



thanµI andσI ) of bothfµσ andfγ follow a skewed distri-
bution that can be well modelled by a Rayleigh pdf (see
Fig. 1(c)). Rayleigh equalization (R.E.)along the di-
mensiond forces the distribution to have a uniform dis-
tribution U(0, 1), i.e. X

(n)
d = 1 − exp

(
−X2

d

2γ2
d

)
, where

γ2
d = 1

2M

M∑
i=1

|(fγ)d|2 if M is the number of features in

a given dataset.
We now compare the indexing performance ofR.E.with

that of standard normalization (S.N.)(where each dimen-
sion is made to have zero mean and unit variance). We
use an aerial image dataset with M=90,744 subimages of
128×128 pixels. fγ is computed for each subimage us-
ing previously computed MPEG-7 features, and a standard
VA file index [6] (with S bits per dimension) is constructed
for the dataset. The indexing efficiency is quantified by the
number of candidates (the smaller the better) obtained after
VA filtering for K nearest neighbors. Table 1 shows these
numbers (averaged over 20 queries) forS.N.andR.E., for
K = 20, and different values ofS. Note thatR.E results
in fewer candidates, thus indicating a more efficient index
structure.

Table 1: Number of candidates obtained after a 20-NN VA
filtering (using VA-file index offγ , with S bits per dimen-
sion).

S 8 7 6 5 4
S.N. 74 189 863 3466 9176
R.E. 66 147 440 1460 3481

3. Adaptive Nearest Neighbor Search for Rele-
vance Feedback

In content-based retrieval, to retrieve images that are sim-
ilar in texture or color, usually one computes the nearest
neighbors of the query feature vector in the corresponding
feature space. Nearest neighbor computations over a large
number of dataset items is expensive. This is further ag-
gravated by the high dimensionality of image descriptors,
and the need to perform this search repetitively in relevance
feedback. This can be a limiting factor on the overall effec-
tiveness of using relevance feedback for similarity retrieval.
We address the problem of nearest neighbor search for rel-
evance feedback applications. Our method takes advantage
of the correlation between two sets of nearest neighbors
from the consecutive iterations in pruning the search space.

3.1. Indexing High-dimensional Spaces

Basically, the purpose of the index is to narrow the scope
of the search and hence avoid accessing irrelevant feature
vectors. Recently, there has been much work on index-
ing structures to support high-dimensional feature spaces.

However, as reported in [1], the effectiveness of many of
these indexing structures is highly data-dependent and, in
general, difficult to predict. Often a simple linear scan of
all the items in the database is cheaper than using an index
based search in high dimensions. An alternative to high-
dimensional index structures is a compressed representation
of the database items, like the vector approximation struc-
ture known as VA-File [6].

The construction of the approximation is based on the
feature values in each of the dimensions independently. As
a result, the compressed domain representation can support
query search if the distance is quadratic. Secondly, the con-
struction of approximation can be made adaptive to the di-
mensionality of data.

Consider a databaseΦ = {Fi | i ∈ [1, N ]} of N
elements, whereFi is anM -dimensional feature vector.

Fi = [fi1, fi2, . . . , fiM ]T (3)

Each of the feature vector dimensions is partitioned into
non overlapping segments. Generally, the number of seg-
ments is2Bj , j ∈ [1,M ]. Bj is the number of bits allocated
to dimensionj. Denote the boundary points that determine
the2Bj partitions to beblj , l = 0, 1, 2, . . . , (2Bj − 1). For
a feature vectorFi, its approximationC(Fi) is an index to
the cell containingFi. If Fi is in partition l along thejth

dimension, then:blj ≤ fij < b(l+1)j .
Approximation based nearest neighbor search can be

considered to be a two-phase filtering process [6]. Phase
I is an approximation-level filtering. In this phase, the set of
all vector approximations is scanned sequentially and lower
and upper bounds are computed on the distances of each ob-
ject in the database to the query object. During the scan, a
buffer is used to keep track of theKth largest upper bound
ρ found from the scanned approximations. If an approx-
imation is encountered such that its lower bound is larger
than theKth largest upper bound found so far, the corre-
sponding feature vector can be skipped since at least better
candidates exist. Otherwise, the approximation will be se-
lected as a candidate and its upper bound will be used to
update the buffer. The resulting set of candidate objects at
this stage isN1(Q,W ). Phase II findsK nearest neighbors
from the feature vectors contained by approximations fil-
tered in Phase I. The feature vectors are visited in increas-
ing order of their lower bounds and the exact distances to
the query vector are computed. If a lower bound is reached
that is larger than theKth actual nearest neighbor distance
encountered so far, there is no need to visit the remaining
candidates. Finally, the nearest neighbors are found by sort-
ing the distances.

In database searches, the disk/page access is an expen-
sive process. The number of candidates from Phase I filter-
ing determines the cost of disk/page access. Our focus is
on improving Phase I filtering in the presence of relevance
feedback.
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(c) Search Space
Figure 2: a) Construction of 2D VA-file approximations and bound computation for (1) weighted Euclidean and (2)quadratic
distance; b) Rotational mapping of feature space:A → A′:A′ = PA; c) Illustration of usingru

t+1 to limit the search space in
Phase I adaptive filtering.

3.2. Relevance Feedback

A way to compute the new set of retrievals closer to the
user’s expectation is to modify the similarity metric used in
computing the distances between the query and the database
items. If Q is a query vector,Fi is a database feature vec-
tor, andWt is a symmetric, real, positive semi-definite ma-
trix, the distanced(Q,Fi,W ) between two feature vectors
is typically calculated as a quadratic function:

d2(Q,Fi,W ) = (Q− Fi)T W (Q− Fi) (4)

During each iteration, the weight matrix is updated based
on the user’s feedback. Given the updated weight matrix,
the next set of nearest neighbors is then computed. Let
Wt be the weight matrix used in iterationt, and Rt be
the set ofK nearest neighbors to the query objectQ, us-
ing (4) to compute the distances. At iterationt, define
the kth positive example vector (k ∈ [1,K ′]) as: X

(t)
k =

[x(t)
k1 , x

(t)
k2 , . . . , x

(t)
kM ]T , X

(t)
k ∈ Rt. K ′ is the number of

relevant objects identified by the user. TheseK ′ examples
are used to modify the weight matrixWt to Wt+1. We con-
sider an optimized learning technique proposed in [7] that
merges two existing well-known updating schemes MARS
[8] and MindReader [9].

The adaptive nearest neighbor search problem can be for-
mulated as follows:givenRt, Wt, andK ′, the weight ma-
trix Wt+1 is derived fromWt using some update scheme.
Compute the next set ofK nearest neighborsRt+1 using
Wt+1 using minimum number of computations.

Given a queryQ and a feature vectorFi, the lower and
upper bounds ofd(Q, Fi,W

t) are defined asLi(Q,Wt)
and Ui(Q,Wt), so thatLi(Q,Wt) ≤ d(Q,Fi,Wt) ≤
Ui(Q,Wt). The computation of lower and upper bound
of distanced(Q,Fi, Λt) using a VA-file index is straight-
forward for a diagonalΛt [10]. For the case of general
quadratic distance metric, nearest neighbor query becomes
an ellipsoid query.

The locus of all points Fi having a distance
d(Q,Fi,Wt) ≤ ε is an ellipsoid centered around query
point Q. It is difficult to determine whether a general
ellipsoid intersects a cell in the original feature space. Fig-
ure 2(a) illustrates the lower and upper bounds in the case
of weighted Euclidean distance and quadratic distance. For
quadratic metric, exact distance computation between the
query objectQ and a rectangleC(Fi) requires numerically
extensive quadratic programming approach. That would
undermine the advantages of using an indexing structure.

Conservative bounds on rectangular approximations in-
troduced in [11, 12] allow us to avoid exact distance com-
putation between the query objectQ and every approxima-
tion cell C(Fi). However, for restrictive bounds, the dis-
tance computation stays quadratic with number of dimen-
sionsM . In [12], spatial transformation of the feature vec-
tor space significantly reduces CPU cost. We adopt a similar
approach, further reducing computational cost and improv-
ing efficiency. Assuming that distance matrixWt is real,
symmetric, and positive definite, we can factorizeWt as
Wt = PT

t ΛtPt, Pt ∗ PT
t = I, and from (4):

d2(Q,Fi, Wt) = (Pt(Q− Fi))T Λt(Pt(Q− Fi)) (5)

Define a rotational mapping of a pointD asD → D′,
whereD′ = PtD. All quadratic distances in the origi-
nal space transform to weighted Euclidean distances in the
mapped space. CellC(D) that approximates feature point
D is transformed into a hyper parallelogramC(D′) in the
mapped space, as illustrated in Figure 2(b). The parallel-
ogramC(D′) can be approximated with bounding hyper
rectangular cellC ′(D′). The approximationC(D) only
specifies the bounding rectangle position in the mapped
space. The size of relative bounding rectangle depends only
on the cell size in the original space, and the rotation matrix
P . Relative bounding rectangle in the mapped space can be
computed before Phase I filtering.

Note that theWt update is computed before approxima-



tion level filtering. The weight matrix in the mapped space
is Λt, and the quadratic distance becomes a weighted Eu-
clidean distance. Lower and upper bounds,Li(Q, Wt) and
Ui(Q,Wt), respectively, are approximated in the mapped
space withLi(Q′, Λt) andUi(Q′, Λt), using the weighted
Euclidean matrixΛt, as in (5) (see Figure 2(c)). Also,
Li(Q′,Λt) ≤ Li(Q,Wt), andUi(Q, Wt) ≤ Ui(Q′,Λt),
and therefore:

Li(Q′,Λt) ≤ d(Q,Fi,Wt) ≤ Ui(Q′,Λt) (6)

3.3. Adaptive Nearest Neighbor Search

Let Rt−1 = {F (t−1)
k } be the set ofK nearest neighbors

of queryQ at iterationt−1 under weight matrixWt−1, and
rt(Q) be the maximum distance betweenQ and the items in
Rt. Defineru

t (Q) = max{d(Q, F
(t−1)
k ,Wt)}, k ∈ [1,K].

WhenWt−1 is updated toWt, we can establish an upper
bound onrt(Q) as: rt(Q) ≤ ru

t (Q), i.e. maximum of the
distances between the queryQ and objects inRt computed
usingWt, can not be larger than the maximum distance be-
tween the queryQ and the objects inRt−1 computed using
Wt. This is intuitively clear, sinceRt is the set ofK nearest
neighbors fromΦ to Q, underWt.

Phase I filtering determines a subset of approximations
from which the K nearest neighbors can be retrieved.
Let Nopt

1 (Q,Wt) be the minimal set of approximations
that containK nearest neighbors. The best case sce-
nario for Phase I filtering is to identify exactly this subset
N1(Q,Wt) = Nopt

1 (Q,Wt). For approximationC(Fi)
to be a qualified one inNopt

1 (Q,Wt), its lower bound
Li(Q,Wt) must satisfy:

Li(Q,Wt) < ru
t (Q) (7)

Let ρ be theKth largest upper bound encountered so far
during a sequential scan of approximations. In the stan-
dard approaches [6], the approximationC(Fi) is included in
N1(Q,Wt) only if Li(Q,Wt) < ρ, and theρ is updated if
Ui(Q,Wt) < ρ . Only theKth smallest upper bound from
the scanned approximations is available and used for filter-
ing. The best filtering bound in Phase I ismin(ru

t (Q), ρ).
The relationshipru

t (Q,Wt) ≤ ρ is satisfied for the larger
part of database scanning. In general, fewer candidates need
to be examined in Phase I filtering if we useru

t (Q) as a fil-
tering bound.

There are two essential differences between the the exist-
ing approaches and the proposed approach: (1) Only the ab-
solute position of the approximation rectangle is computed
during the Phase I filtering. We can compute the grid map-
ping in advance. Lower boundLi(Q,Wt) computation dur-
ing Phase I is linear with number of dimensions for every
VA-file index. (2) The proposed constraint in approxima-
tion filtering is based on relevance feedback results, and it
gives us a smaller set of false candidates.

3.4. Experiments

We demonstrate the effectiveness of the proposed ap-
proach over a dataset ofN = 90774 texture feature vectors,
M = 60 dimensions each. Experiments are carried out for
different resolutionsS used for constructing standard VA,
S ∈ [2, 8]. 2S bits are assigned to each of theM uniformly
partitioned feature dimensions. We compare the standard
VA approach toK-NN search to our adaptive for different
S, in relevance feedback presence.

QueriesQi are selected from the dataset to cover both
dense cluster representatives and outliers in the feature
space. For each queryQi, K = 70 nearest neighbors are
retrieved during each iteration. The feedback from the user
is based on texture relevance only. For a specific query, the
user selectsK ′ = 65 relevant retrievals to update the dis-
tance measure. The distance metric is updated before every
iteration.

The approximations are constructed using the standard
VA index. We choose to assign2S bits to all dimensions.
Each of the feature dimensions is uniformly partitioned, at
different resolutions. Experiments are carried out for differ-
ent numbers of bits assigned to every dimension,S ∈ [2, 7].
Larger value corresponds to the approximation constructed
at a finer resolution. We compare the standard VA ap-
proach to computing theK nearest neighbors to our pro-
posed method for differentS, in relevance feedback pres-
ence. Computation of upper bounds for the standard ap-
proach adds marginal complexity, sinceUi(Q,Wt) is found
in a mapped space. Filter boundρ rapidly increases when
the resolution is smaller, due to the larger sizes of the hy-
per rectangles used in the corresponding approximations. A
larger difference betweenru

t andρ should impose a signif-
icant improvement for the proposed method. Thus, in the
presence of relevance feedback we can either save some
memory for approximation storage or reduce the number
of disc access for the same resolution. Figure 3(a) shows
that the difference betweenru

t (Q) andρ increases for lower
values ofS, for weighted Euclidean distance and quadratic.

For a given resolutionS, and the query vectorQi, num-
ber of candidates from Phase I filtering is noted asN

(s)
1 (Qi)

for standard approach andN (r)
1 (Qi) for adaptive approach.

Define an average number of Phase I candidates over the
example queries asN (s)

1 for standard approach andN (r)
1

for adaptive approach. Also, define an effectiveness mea-

sure of the proposed method:α(r) = 1
I

∑I
i=1

N
(s)
1 (Qi)

N
(r)
1 (Qi)

;

We average overI = 20 query vectors. The number of
candidates resulting from the standard and adaptive Phase
I filtering, using quadratic distance metric, is given in Fig-
ure 3(b). The effectivenessα(r) is significant, especially
for coarser approximations, see Figure 3(c). This is a real
dataset, andα is not monotonic overS, since the results are
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strongly correlated with distribution of the feature points in
60-dimensional space. We can conclude that the minimum
gain of the proposed adaptive filtering is significant at every
resolution.

4. Summary

We have shown that, when texture images are passed
through Gabor filters, the outputs have a strong tendency
to follow a Rayleigh distribution. Based on this, we have
modified the MPEG-7 texture descriptor to have lower di-
mensionality and computational complexity. This bene-
fits content-based retrieval systems by significantly reduc-
ing storage, computational expense, indexing overhead, and
retrieval time. We support this approach by demonstrat-
ing that the new descriptor performs comparably with the
MPEG-7 descriptor.

The paper also presented a framework that supports effi-
cient retrieval of relevance feedback results, even when the
similarity metric is quadratic. Based on the user’s input,
the weight matrix of the feature space is modified in every
iteration, and a new set of nearest neighbors is computed.
The cost of nearest neighbor computation in each iteration
is quadratic in the number of dimensions and linear in the
number of items. The proposed scheme allows us to use
rectangular approximations for nearest neighbor search un-
der a quadratic distance metric and exploits correlations be-
tween two consecutive nearest neighbor sets. The proposed
approach significantly reduces the overall search complex-
ity.
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