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Abstract

Texture has been recognized as an important visual prim-
itive in image analysis. A widely used texture descrip-
tor, which is part of the MPEG-7 standard, is that com-
puted using multiscale Gabor filters. The high dimen-
sionality and computational complexity of this descrip-
tor adversely affect the efficiency of content-based re-
trieval systems. We propose a modified texture descrip-
tor that has comparable performance, but with nearly
half the dimensionality and less computational expense.
This gain is based on a claim that the distribution of
(absolute values of) filter outputs have a strong ten-
dency to be Rayleigh. Experimental results show that
the dimensionality can be reduced by almost 50%, with
a tradeoff of less than 3% on the error rate. Further-
more, it is easy to compute the new feature using the
old one, without having to repeat the computationally
expensive filtering step. We also propose a new normal-
ization method that improves similarity retrieval and
indexing efficiency.

1. INTRODUCTION

Image texture has found wide application in remote
sensing, medical diagnosis, quality control, etc. Texture-
based features have been proven to be effective for tasks
such as segmentation and similarity retrieval. The use
of texture for content-based access has been explored
by several researchers ([1], for example). An image can
be considered as a mosaic of textures and texture fea-
tures associated with the regions can be used to index
the image data for searching and browsing.

Several methods have been used thus far to extract
texture features. The prominent ones are based on a)
random field texture models [2, 3], and b) multiscale
filtering methods [4, 5]. Among these, a widely used
feature [5] is that computed using multiscale Gabor fil-
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ters. This feature is part of the MPEG-7 standard [6]
for multimedia content descriptors. This choice is mo-
tivated by several factors. The Gabor representation
has been shown to be optimal in the sense of mini-
mizing the joint two-dimensional uncertainty in space
and frequency [7], and thus are well suited for texture
segmentation problems. Furthermore, Gabor filters ap-
proximate the characteristics of certain cells in the vi-
sual cortex of some mammals [8].

The high dimensionality and computational com-
plexity of the MPEG-7 descriptor adversely affect the
performance as well as the storage, computation, and
indexing requirements of a content-based retrieval sys-
tem. In this paper, we study in detail the statistical
properties of Gabor filter outputs when the inputs are
texture images. Based on the results, we propose a
modified texture descriptor that has comparable per-
formance, but with nearly half the dimensionality and
less computational expense. Furthermore, it is easy
to compute the new feature using the old one, with-
out having to repeat the computationally expensive
filtering step. We also propose a new normalization
method that improves similarity retrieval and indexing
efficiency.

The paper is organized as follows. In Sec. 2, we in-
troduce the Gabor filter bank and the MPEG-7 texture
descriptor. In Sec. 3, we study the statistical proper-
ties of the Gabor filter outputs, and propose a modified
descriptor. In Sec. 4, we compare the performance of
the new descriptor and normalization scheme with that
of the existing ones. We conclude with a discussion in
Sec. 5.

2. A GABOR TEXTURE DESCRIPTOR

A Gabor filter can be viewed as a sinusoidal plane of a
particular frequency and orientation, modulated by a
Gaussian envelope. A two-dimensional Gabor function
is defined as
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Fig. 1. (a) The Rice pdf in (5); (b) a texture image input; (c) and (d) Histograms (with 100 bins) of Gabor filter outputs
for two different center frequencies.

where j =
√
−1, and W is the frequency of the modu-

lated sinusoid. A class of self-similar functions, referred
to as the Gabor wavelets, is constructed by appropriate
dilations and translations of the mother wavelet g(x, y),
as follows:

gmn(x, y)=a−mg(x′, y′), a > 1, m, n ∈ Z,
x′=a−m(x cos θ + y sin θ),
y′=a−m(−x sin θ + y cos θ),

(2)

where θ = nπ/K, and K is the total number of ori-
entations. The scale factor a−m in (2) ensures that
the energy is independent of m. This set of functions
forms a non-orthogonal basis for the multi-resolution
decomposition.

Gabor filters can be considered to be orientation
and scale tunable edge and line detectors, and the statis-
tics of these micro-features can be used to characterize
the underlying texture. A Gabor-based homogeneous
texture descriptor has been adopted by the MPEG-7
standard for its effectiveness and efficiency. The tex-
ture descriptor for s scales and k orientations is given
by

fµσ = [µ00, σ00, µ01, σ01, ..., µs−1,k−1, σs−1,k−1, µI , σI ], (3)

where µmn and σmn are the mean and standard devia-
tion of the filter outputs m(x, y) = |gmn(x, y) ∗ i(x, y)|,
for an input texture image i (∗ denotes convolution).
µI and σI are the mean and standard deviation of the
pixel intensities of the image. Note that the dimension-
ality of fµσ is 2sk+2. Visual dissimilarity between two
textures is quantified by computing a distance (usually
L1 or L2) between their descriptors.

3. STATISTICS OF THE FILTER OUTPUTS

The format of (3) for the texture descriptor is driven
by the implicit assumption that the filter outputs have
Gaussian-like distributions. Therefore, each of these
distributions is taken to be described completely by
its mean and standard deviation. In the following, we
argue analytically against this approach, and show that
the feature vector dimension can be nearly halved.

Dunn and Higgins [9] claim (for the 1-D case) that
the Gabor filter outputs have a Rice distribution. Their
proof is based on modeling the input texture as a peri-
odic lattice of texels with random perturbations. Tex-
els are similar, but not necessarily identical, geometric
primitives that constitute a texture. We first outline
their proof and then draw some inferences.

3.1. Rician model for Gabor filter outputs [9]

Consider the 1-D case for simplicity. The Gabor filter
outputs are given by m(x) = |i(x) ∗ h(x)|, where i(x) is
a real image, and h(x) is a 1-D Gabor function. The 1-
D Gabor function can be written as h(x) = g(x)ejω0x,
where g(x) is a Gaussian and ω0 is the frequency. The
real and imaginary parts of h are hr = g(x) cos(ω0x)
and hi = g(x) sin(ω0x). The Gabor filter output can
then be expressed as m(x) = |A(x) + jB(x)|, where
A(x) = i(x)∗hr(x) and B(x) = i(x)∗hi(x). Let Hr(ω)
and I(ω) be the fourier transforms of hr and i, respec-
tively. If i is a periodic lattice of texels, then I(ω) is
a periodic collection of impulses. Hr(ω) is a pair of
Gaussians centered at ±ω0. Supposing that hr is ap-
proximately narrowband and ω0 coincides with one of
the impulses comprising I(ω), applying hr to i would
result in a pair of impulses at frequencies ±ω0. This
means A(x) ≈ A0 cos(ω0x+ψ), where ψ is an arbitrary
phase angle.

For a nonuniform texture (a periodic texel lattice
with random perturbations), it can be shown that (de-
tails in [9]) A(x) = Â(x) + N(x), where Â(x) =
A0 cos(ω0x + ψ) is the output without perturbation,
and N(x) is a zero-mean, wide-sense stationary Gaus-
sian random process with power E[N2(x)] = σ2. N(x)
can be modeled as a narrowband process [10], i.e. N(x)
= X(x) cos(ω0x)−Y (x) sin(ω0x), whereX(x) and Y (x)
are independent, zero-mean, Gaussian random process-
es. Thus,

A(x)=[A0 cos(ψ) +X(x)] cos(ω0x)
−[A0 sin(ψ) + Y (x)] sin(ω0x)

=R(x) cos(ω0x+ Φ(x)),
(4)
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Fig. 2. Histograms of the values along an arbitrary dimen-
sion of (a) fµσ, and (b) fγ .

where R(x) is the amplitude, and Φ(x) is the phase an-
gle of A(x). Since A(x) is the superposition of a sinu-
soid with narrowband Gaussian noise, it is well known
that R(x) has the Rice pdf [10],

fR(r) =
r

σ2
exp

(
−r

2 +A2
0

2σ2

)
I0

(
A0r

σ2

)
, (5)

where I0(x) is the zero-order modified Bessel function
of the first kind. It can then be shown that m(x) =
|A(x) + jB(x)| =

√
A(x)2 +B(x)2 = R(x). There-

fore, m(x) is Rician.

3.2. Practical considerations

The Rice pdf (see Fig. 1a) in (5) can vary from a
Rayleigh pdf for small A0 (A0 ≈ 0) to an approximate
Gaussian pdf for large A0 (A0 � σ). The latter case oc-
curs when the texture is well-defined and periodic, with
a highly peaked frequency component at ω0. The filter
outputs tend to have a Rayleigh pdf when the frequency
components of the texture are weak in the vicinity of
ω0. The filter bank in (2) used for computing the tex-
ture descriptor has predefined center frequencies. Over
a wide range of textures, the probability that a given
texture has a strong component at a specified center
frequency, is small. Hence, we claim that the Rayleigh
pdf model for filter output distributions is valid with
a higher probability than the Gaussian pdf model that
inspires the descriptor in (3). This claim is consistent
with the experimental results in Sec. 4.

Fig. 1b-d shows the result of filtering a texture im-
age with Gabor filters of two different center frequen-
cies. Fig. 1c is closer to a Rayleigh pdf, and Fig. 1d
is closer to a Gaussian pdf. In the latter case, the in-
put has strong frequencies in the vicinity of the center
frequency of the filter. In the former case, it does not.

The Rayleigh pdf, p(z) = z
γ2 exp

(
− z2

2γ2

)
has only

one parameter γ. Therefore, instead of (3), we pro-
pose the following texture descriptor with dimension-
ality sk + 2,

fγ = [γ00, γ01, ..., γs−1,k−1, µI , σI ], (6)

where γmn is the Rayleigh parameter of the output
distribution when the Gabor filter gmn is applied. The
maximum likelihood estimates of the parameters are
given by

γ2
mn =

1
2N

N∑
i=1

|zi|2, (7)

where zi are corresponding filter outputs, and N is the
number of output coefficients.

If we have precomputed fµσ (MPEG-7) features, it
is easy to compute fγ without having to perform the
filtering step. Since, in (3),

µmn =
1
N

N∑
i=1

|zi|; σ2
mn =

1
N

N∑
i=1

|zi|2−µ2
mn, (8)

it can be shown that γ2
mn = 1

2

(
µ2

mn + σ2
mn

)
. Thus we

can compute the new features from the old ones with-
out having to repeat the computationally expensive
filtering step. This observation is significant because
many databases already use MPEG-7 texture features
for content-based access. Also, we can see from (7)
and (8) that, for large values of N , fγ needs 50% fewer
additions in its computation than fµσ.

3.3. Normalization

The distance metric used for measuring visual dissim-
ilarity is more sensitive in dimensions with larger dy-
namic ranges. Since this is undesirable, the descriptors
are normalized so that each dimension has the same dy-
namic range. We experiment with two normalization
methods (along each dimension d separately):

1. Standard normalization (S.N.): Forcing the dis-
tribution to have zero mean and unit variance,
i.e. X(n)

d = (Xd − µd)/σd,

2. Rayleigh equalization (R.E.): Forcing the distri-
bution to have a uniform distribution U(0, 1), i.e.
X

(n)
d = 1− exp

(
−X2

d

2γ2
d

)
, where γd is estimated in

a manner similar to (7). This does not apply to
the last two (µI and σI) dimensions.

The latter is based on the observation that, over a large
dataset, the values along each dimension (other than µI

and σI) of both fµσ and fγ follow a skewed distribution
that can be well modeled by a Rayleigh pdf (see Fig.
2). R.E. enables the use of uniform space partition-
ing instead of data partitioning in a high dimensional
space, thus improving indexing efficiency.

4. EXPERIMENTAL RESULTS

We compare the similarity retrieval performance of fµσ

and fγ on the Brodatz texture dataset, which is widely
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Fig. 3. Precision vs. Recall curves over the Brodatz
dataset.

used for this purpose. Since we consider 5 scales and 6
orientations, the dimensionality of fµσ is 62 and that
of fγ is 32. The dataset consists of 1856 images (16
from each of 116 texture classes). Each texture q is
used in turn as the query. Let A(q) denote the set of
T retrievals (based on the smallest L1 distances from q
in the descriptor space) and R(q), the set of images in
the dataset relevant to q. The precision is defined by
P (q) = |A(q)∩R(q)|

|A(q)| , and the recall by C(q) = |A(q)∩R(q)|
|R(q)| ,

where |·| denotes cardinality. Fig. 3 shows the precision
vs. recall curves for each descriptor and normalization
method. The curves are plotted by averaging precision
and recall over all q, for different values of T (shown
below the curves). In the case of R.E., the µI and
σI dimensions are normalized using S.N. While the di-
mensionality of fγ is smaller by almost 50% (for large
sk), the drop in precision (equivalently, the increase in
error rate) is below 3% for a wide range of T . This
supports our claim that the Rayleigh pdf assumption
for filter outputs is valid with high probability when
we consider a wide range of textures. Also, note that
R.E. gives better performance than S.N.

To compare the indexing performance of S.N. and
R.E., we use an aerial image dataset with 90,744 subim-
ages of 128×128 pixels. fγ is computed for each subim-
age (using previously computed MPEG-7 features) and
a standard VA file index [11] (with S bits per dimen-
sion) is constructed for the dataset. The indexing effi-
ciency is quantified by the number of candidates (the
smaller the better) obtained after VA filtering for K
nearest neighbors. Table 1 shows these numbers (aver-
aged over 20 queries) for S.N. and R.E., for K = 20,
and different values of S.

5. DISCUSSION

When texture images are passed through Gabor filters,
the filter outputs have a strong tendency to follow a
Rayleigh distribution. Based on this, we have modified
the MPEG-7 texture descriptor to have lower dimen-
sionality and computational complexity. This bene-

Table 1. Number of candidates obtained after a 20-NN VA
filtering (using VA-file index of fγ , with S bits per dimen-
sion).

S 8 7 6 5 4
S.N. 74 189 863 3466 9176
R.E. 66 147 440 1460 3481

fits content-based retrieval systems by significantly re-
ducing storage, computational expense, indexing over-
head, and retrieval time. We support this approach by
demonstrating that the new descriptor performs com-
parably with the MPEG-7 descriptor.

Another observed phenomenon is that the values
along each dimension of both descriptors follow a skew-
ed distribution that can be well modeled by a Rayleigh
pdf. Exploiting this behavior, we have proposed a new
normalization scheme for the descriptors. We demon-
strate that the new scheme improves similarity retrieval
performance and indexing efficiency. We are working
on a more accurate characterization of the aforemen-
tioned distribution.
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