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ABSTRACT 
A novel scheme for image segmentation is presented. 

An image segmentation criterion is proposed that groups 
similar pixels together to form regions. This criterion is 
formulated as a cost function. This cost function is 
minimized by using gradient-descent methods, which lead 
to a curve evolution equation that segments the image into 
multiple homogenous regions. Homogeneity is specified 
through a pixel-to-pixel similarity measure, which is 
defined by the user and can be adaptive based on the 
current application. To improve the performance of the 
system, an edge function is also used to adjust the speed 
of the competing curves. The proposed method can be 
easily applied to vector valued images such as texture and 
color images without a significant addition to 
computational complexity. 
 

1. INTRODUCTION 
Image segmentation is an important step in many 

image processing and computer vision tasks. Previous 
approaches to image segmentation include filtering-based 
methods to detect edges followed by edge linking, PDE 
and active contour models [1,5,6,7,8,11,12], region 
growing and merging, global optimization based on 
energy functions and Bayesian criteria, and graph 
partitioning and clustering. 
Curve evolution methods have been used for image 
segmentation for over a decade. Some of these methods 
utilize the geometric nature of the curves to evolve them, 
and some of them use a cost function to guide the curve 
evolution. In this paper we define an image segmentation 
criterion and formulate it as a cost function. This cost 
function is then used to guide the curve evolution to 
segment the image into homogenous and distinct regions. 
This paper extends our previous work [15] in two ways. 
(a) In [15], the image is assumed to consist of only 
background and foreground regions. Even though 
interesting theoretically and for images from specific 
domains, this is not a realistic assumption for most natural 
images where multiple objects are present. This paper 
extends this previous formulation to deal with multiple 
regions. (b) To further enhance the performance of the 
segmentation, we use an edge function that controls the 
speed of evolving curve fronts. Having an edge-based 
term will help the region-based features to find the precise 
boundary. 
The rest of the paper is organized as follows. We review 
region-based curve evolution methods in section 2. In 
section 3 we present a multi-region-based approach to 

segmentation using geometric active contours. Section 4 
talks about the integration of the edge function to the 
multi-region segmentation framework. In section 5 we 
present some experimental results and conclude with 
discussions in section 6. 

2. PREVIOUS WORK 
Active contours and curve evolution methods usually 

define an initial contour 0C  and deform it towards the 
object boundary. The problem is usually formulated using 
partial differential equations (PDE). The previous research 
follows two different paths in terms of representation and 
implementation of active contours, namely parametric 
active contours (PACs) and geometric active contours 
(GACs). PACs use a parametric representation of the 
curves and GACs utilize level set methods [2,3]. Level set 
methods can easily handle topology changes of the 
evolving contour such as splitting and merging, and 
singularities on the curve such as sharp corners. Recently 
some connections between these two methods have been 
established [1,4]. 
Curve evolution methods can be classified into several 
groups: edge-based [1], region-based [5,6,7] and hybrid 
[8] active contours. Our implementation in this paper is 
based on region-based GAC methods. 
Region-based active contour methods attempt to partition 
the image into two regions: foreground and background. 
They start with an initial closed contour and modify the 
curve according to the image feature statistics of the 
interior and exterior of this contour.  
Developments in region-based active contours [9] are 
more recent than their edge-based counterparts. Region-
based active contours are less dependent on the initial 
location of the contour since they don’t rely much on the 
local image features. 
Let 2( ) : [0,1]C ϕ →ℜ  be a parameterization of a 2-D 
closed curve, I  be a function defined on a closed region 
R , iR  and oR  be the interior and the exterior of C , im  
and om  be the corresponding means, iA  and oA the areas 
of iR  and oR respectively, iI  be ( )iI R  defined on iR  
and oI  be ( )oI R  defined on oR . Tsai, et al. [5] define 
their optimization criteria as maximizing the separation of 
the mean values: ( )2i om m− . This leads to a gradient-
descent equation 
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where N  is the normal vector to C , κ  is the curvature 
and γ  is  a constant weighting factor. The κ dependent 
term is added to keep the curve smooth at all times. 
Chan, et al. [7] on the other hand uses a limiting version 
of Mumford-Shah functional [10] as the criterion, where 
the image is modeled with piecewise constant functions. 
The resultant gradient-descent equation is: 
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Later on Tsai et al. [6] generalized this equation by 
solving the general Mumford-Shah problem instead of the 
limiting case. 

3. MULTI-REGION STABILITY 
This section extends the work in [15], where 

foreground-background segmentation is demonstrated, to 
multiple regions. The objective of region stability is to 
have high intra- and low inter-similarity for the segmented 
regions. Achieving this objective ensures that the image is 
segmented into stable regions. Stable regions are regions 
that neither can be merged with other regions, nor can be 
split into smaller areas. Merging stable regions would 
decrease the homogeneity and splitting the stable regions 
would increase overall inter-region similarity. 
This idea can be formulated as the minimization of a cost 
function. Let I be the image. Let 1 2( , )w s s  be a positive, 
symmetric function, which is a measure of the 
dissimilarity between features associated with pixels 

1s and 2s , 1 2,s s R∈ . Examples for 1 2( , )w s s  are 
 1 2 1 2( , ) ( ) ( )w s s I s I s= −   (3) 
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where V : 2 N→  represents a vector-valued image. 
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where 1 2( , )dist s s  is either 1L  or 2L (Euclidean) distance. 

Suppose the image consists of N+1 regions 
1{ ,..., } { }N BR R R∪ , where BR  is the background, the 

segmentation cost function is: 
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 (6) 
where iα , ijβ  are constants, w  is a similarity measure. 

Inter-region similarity is only calculated for neighboring 
regions. To minimize this function, we utilize gradient 
descent methods, which result in local minima instead of 
the global minima. We start with initial set of regions and 
update these regions iteratively to converge to a stable 
solution. Take the initial foreground regions such that 

they don’t touch each other. Let the curves 1{ ,..., }NC C  
correspond to the boundaries of respective regions. With 
the help of the derivations in [15], the gradient descent for 
(6) is 
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where A and B are constants, iN  is the outwards normal 
vectors for iC , and i ic C∈ . To signify normalization, we 
choose A and B as the inverse of the area of the 
corresponding integral domains: 1/ ,    1/B iA R B R= =  
While evolving, if any of the curves intersect one another, 
(7) is not applicable anymore. To avoid this, we freeze the 
curve points where they intersect one another. The 
iterative process ends if all the curves are frozen or if they 
converged to the final result. 

4. EDGE FUNCTION INTEGRATION 
In this section we present an edge function and utilize 

this edge function inside our curve evolution framework. 
The edge function discussed here was originally 
introduced in [16]. In the following we briefly describe 
this formulation and discuss our integration of the edge 
function into the multiple region segmentation framework 
(7). The values of this edge function are close to zero on 
the object boundaries and close to one in homogenous 
areas. This way, the curve will stop moving when it 
reaches the edges. Combining an edge function with a 
speed term is common and has been utilized in the past. In 
their independent and parallel works, Caselles et al. [12] 
and Malladi et al. [11] used ( )tC F gNεκ= + , where 

,F ε  are constants, and ( )ˆ1/ 1g I= + ∇  is an edge 

function. One shortcoming in this approach is that the 
speed term F is a constant forcing the curve to expand or 
shrink, whereas in our case the speed term in (7) adapts 
itself. The second shortcoming of this method is that the 
edge function is directly based on the image gradient, 
which is noisy and usually not the best choice. In our case 
we design the edge function as the approximate inverse 
gradient of the Edgeflow vector field, which is calculated 
from the image using grayscale, color or texture features 
or a combination of them. 
Edgeflow image segmentation [14] is a recently proposed 
method that is based on filtering and vector diffusion 
techniques. Its effectiveness has been demonstrated on a 
large class of images. It features multiscale capabilities 
and uses multiple image attributes such as texture and 
color. A vector field is defined on the pixels of the image 
grid (Fig 1c). At each pixel, the vector’s direction is 
oriented towards the closest image discontinuity at a 
predefined scale. The magnitude of the vectors depends 
on the strength and the distance of the discontinuity. We 
utilize this vector field to obtain the edge function. Let S  
be the edgeflow vector field. Based on the characteristics 



of the Edgeflow, a function V  that satisfies the equation 
V S∇ =  is desirable as the edge function. Unfortunately 

there is no guaranty that Edgeflow is a conservative vector 
field, so we need to find an approximation. According to 
the Helmholtz theorem, any vector field can be written as 
a sum of an irrotational (conservative) and a solenoidal 
vector field. So the edge flow vector field can be written 
as 
 S V A= −∇ +∇×    (8) 
taking the divergence of both sides, second term becomes 
zero. We only need to solve a Poisson equation [13]
 2S V∇⋅ = −∇     (9) 
to find the edge function V . An example for this edge 
function is shown in Fig 1b. This example is generated 
using Gabor texture features. 

After obtaining the edge function, we can integrate it 
to (7) By weighting : 
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Use of the edge function brings more information about 
the segmentation and helps find precise boundaries. 

5. EXPERIMENTAL RESULTS 
Starting with the input image I, the dissimilarity 

matrix W and its elements ( , )i jw s s  are calculated using 

(3), (4) or (5). Edgeflow vector field is calculated from the 
image and an edge functions is derived from this vector 
field using (9). To capture the boundaries, several curves 
are initialized either manually or automatically and these 
initial seed curves are then propagated under the curvature 
(κ ) and dissimilarity (w) based forces using (10) until the 
curve evolution stops. The proposed segmentation method 
does not depend on the initial location of the curve as 
much as the edge-based active contours [1]. There is no 
restriction that the curves should be initialized inside 
object boundaries.  

We use the well-known level set method formulation 
[2,3] to implement the curve evolution in (10). This 
requires defining a corresponding level set function U that 
embeds C as its zero level set of U. The level set equation 
corresponding to (10) is 
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In our method, if two curves overlap at some point c, we 
need to stop that part of the curves from further evolving. 
Since we are using level-set methods, this is not as simple 
as setting /iC t∂ ∂  to zero at that location. We are actually 
evolving a surface U instead of a curve. To be able to stop 
the curve evolution, we need to stop the zero level set of 
this evolving surface at the location c. To achieve this, we 
set /iU t∂ ∂  to zero on a 5 by 5 neighborhood of c. We are 
using a narrow band implementation of level set methods 

where the surface only exists on a thin narrow band 
around the curve. The width of the narrow band is 
selected to be 5 to prevent forming of new zero level sets 
around c. 
We have tested the segmentation method on different 
color images. In our three examples, the dissimilarity 
values (w) are calculated from RGB color values using 
(4). The figures are best viewed in color. 
Fig 2 shows segmentation of a flower field image. The 
corresponding edge function is shown in Fig 2a. Three 
rectangular curves are initialized on the image (Fig 2c). 
The curves then evolved (Fig 2d) and after they converge 
(Fig 2e) a simple region merging is applied (Fig 2f). 
Fig 3 shows an automatic segmentation of a garden image. 
Nine curves are initialized automatically and evolved. A 
simple region merging is applied at the end.  
Fig 4 shows segmentation of an image where 5 different 
type of bean clusters for 5 different regions. Six curves 
are initialized automatically and evolved. The bean 
clusters are segmented in Fig 4d. 

6. DISCUSSIONS 
An effective and adaptive segmentation method is 

introduced that expands the work in [15] to multiple 
regions and integrates a robust edge function for 
segmenting precise boundaries. Most region-based active 
contours are setup so that they can only partition an image 
into background and foreground regions. Most of the 
natural and complex images consist more than two 
regions. This paper addresses this issue of segmenting an 
image into multiple regions. 
Segmentation effectiveness is usually dependent on the 
application at hand. Therefore segmentation algorithms 
need to be flexible and adapt themselves accordingly. In 
our case, the user has the flexibility of choosing the 
similarity measure, which can be dictated by the needs of 
an application. This similarity measure can be based on 
any image characteristics such as color or texture. 
One other advantage of our approach is that the region 
growing doesn’t require a lot of seed curves, the curves 
can be flexibly placed and sized. Our method doesn’t lead 
to extensive over-segmenting as in the case of watershed 
methods. 
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Figure 1. (a) An image of a tiger. (b) Edge function. (c) Edgeflow 
vector field corresponding to the rectangle on the original image. 

Figure 2. (a) Flowers image. (b) Edge function. (c) Initial curves. 
(d) Curves are evolving (e) All curves have converged (f) Results 
after simple region merging. (Best viewed in color) 
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(d) (c)
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Figure 3. (a) An image of a garden. (b) Edge function. (c) Initial 
curves. (d) Segmentation result after the curves stop and after 
region merging. (Best viewed in color) 

(a) (b) 

(c) (d) 

Figure 4. (a) Beans image. (b) Edge function. Initial curves. (d) 
Segmentation result after all curves stop. (Best viewed in color) 


