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ABSTRACT 
 
Given panoramic video taken along a self-intersecting 
path, we present a method for detecting the intersection 
points. This allows “virtual tours” to be synthesized by 
splicing the panoramic video at the intersection points. 
Spatial intersections are detected by finding the best-
matching panoramic images from a number of nearby 
candidates. Each panoramic image is segmented into 
horizontal strips.  Each strip is averaged in the vertical 
direction. The Fourier coefficients of the resulting 1-D 
data capture the rotation-invariant horizontal texture of 
each panoramic image. The distance between two 
panoramic images is calculated as the sum of the distances 
between their strip texture pairs at the same row positions. 
The intersection is chosen as the two candidate panoramic 
images that have the minimum distance.  

 
 
 

1. INTRODUCTION 

A useful application of panoramic video is the FlyAbout 
system developed by Kimber et al. [4], where panoramic 
video is spatially indexed for interactive navigation. 
Figure 1 shows the FlyAbout interface, which allows the 
user to browse a 360° panoramic video, both by map-like 
and car-like interfaces.  In the FlyAbout system, location 
data is acquired from a Global Positioning Satellite (GPS) 
receiver time-synchronized with the panoramic video. The 
video is taken along arbitrary paths, such as city streets, 
and therefore will contain “path intersection” images of an 
identical location that occurs at different times in the 
panoramic video. Figure 2(a) shows schematic panoramic 
video frames recorded on two intersecting streets X and Y.  

While the video clips taken at the two paths have a 
physical intersection, it is not directly available from the 
data. While it could be determined by manual inspection, 
this is clearly not practical, as a real system might have 
hundreds or thousands of intersections. The GPS location 
can’t be acquired at a rate necessary to locate every frame; 
even for frames that have location data the location 
estimate is noisy. Thus there is a need for detecting 

intersection frames directly from the panoramic images. 
This is useful for a number of applications, for example 
“virtual turn synthesis.” In the intersection of an east-west 
street with a north-south avenue, we need only to record 
the video in the north-south and east-west directions. By 
synthesizing turns we can offer the user any possible turn 
in that intersection, from any street or avenue onto any 
other, from any direction.  

There are several challenges involved in this problem. 
Roads are typically “crowned” to afford drainage, and are 
thus not perfectly flat. Thus frames will not align exactly 
at intersections unless traveled in exactly the same 
direction and lane. Also, outdoor light changes with time 
and weather conditions, which makes it difficult to obtain 
panoramic images under the same illumination condition. 
There may also be image differences due to moving 
objects like vehicles or people. Other factors include 
image warping and other artifacts inherent in many 
panoramic camera systems [1], not to mention the noise 
inherent in digital imaging.  

In terms of panoramic video applications, similar but 
different problems can be found in early research on robot 
navigation. Stein and Medioni [8] use panoramic curves 
from the sky-ground boundary for localization. It requires 
curve data at different locations to be pre-computed and 
stored before localization. It thus cannot be practically 
applied here since there is no data model available. Jogan 
and Leonardis [2] use panoramic eigenimages for spatial 
localization. Their work is based on the training using zero 
phase representation (ZPR) of panoramic images proposed 

 
Figure 1. Flyabout interface. 



 

 

by Pajdla and Hlavac [6]. Jogan and Leonardis [3] 
propose localization based on feature points. The two 
methods will not work here either, because there are no 
training data available in this case.  

The problem addressed here falls into the image-
matching category. Many methods have been proposed for 
image matching, for example the descriptors described in 
the MPEG7 standard [10]. Swain and Ballard [9] propose 
a way of image matching based on histogram analysis; 
Manjunath and Ma[5] propose image matching based on 
texture analysis; Smith and Chang [7] propose image 
matching based on image spatial information. They design 
feature description for general usage. However, the 
panoramic image used here has a typical column-wised 
periodic feature, which provides a strong constraint on the 
image content. Therefore, a more effective matching 
method is possible.  

In this paper we propose a method for finding path 
intersections based on video-image content only. The 
candidates are chosen based on the GPS data first. 
Detection of the spatial intersection between two paths is 
posed as the matching of candidate panoramic images 
from two paths. Each panoramic image is segmented into 
strips. The 1-D textures of the strips are used to represent 
the panoramic image. The distance between two candidate 
panoramic images is calculated as the sum of the distances 
between their strip texture pairs at the same row positions. 
The intersection is chosen as the two candidate panoramic 
images that have the minimum distance.  

2. INTERSECTION DETECTION 

2.1. Narrowing down searching area using GPS data 

Figure 3 shows example GPS data collected in a city 
neighborhood. The horizontal axis corresponds to the 
longitude and the vertical axis corresponds to the latitude. 

GPS data is synchronized with the panoramic video, and 
allows a coarse level of intersection detection. 
Intersections can be found without the GPS data, but the 
availability of the data greatly improves the solution by 
narrowing the possible search candidates. The GPS 
location can’t be acquired at a rate necessary to locate 
every frame; even frames that have location data the 
location estimate is noisy. Thus there is still need for 
detecting intersection frames from the frame image data 
after processing of the GPS data, and it is discussed in the 
following subsection.  

2.2. Intersection detection based on image matching  

GPS data narrow down the detection area to two sets of 
candidate panoramic images from two paths at the 
intersection. For example, in Figure 2(a), 1 2 3, , ,X X X are 
in the same set taken at street X ; 1 2 5, ,..., ,Y Y Y are in the 
same set taken on street Y . Locating the intersection can 
then be posed as the following manner: 
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Figure 2. (a) Path intersection illustration. (b) Images extracted from two paths.       

Figure 3.  An example camera path, plotted by GPS 
latitude and longitude. 



 

 

Given two groups of candidate panoramic images: 
1 2
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Where M  and N  are the number of candidates of X  and 
Y  respectively, we wish to find the two frame indexes 
*and *i j  that are closest, given some distance measure, to 

each other. 

(1 i M,1 j N)
( *, *) argmin (Distance( , ))i ji j X Y

≤ ≤ ≤ ≤
=   (1) 

2.2.1. The 1-D texture of a panoramic image 
If a panoramic camera rotates around a fixed axis of 
projection, the captured panoramic images repeat 
periodically every 360°. Two panoramic images taken at 
the same spatial location with the same axis of projection 
differ only in the phase of camera angle at each height 
position. Here camera angle corresponds to the column 
direction, and height corresponds to row direction of 
panoramic images.  

Because the magnitudes of the Fourier transform are 
invariant to phase, they make excellent rotation-invariant 
features for matching purposes. Note that in this case, the 
computation of spectra does not require the step of 
converting panoramic images into ZPR [6] format as 
posed in [2], because it has basically the same magnitude 
spectra as the original panoramic image. Thus a 
straightforward comparison of the row-wise Fourier 
spectra could serve as the distance measure in  (1). 

However, some practical issues prohibit direct 
application of such spectral matching. For example, when 
the axes of projection of the camera are not the same for 
two panoramic images, they are no longer the same at the 
same row position. The displacement of the position of 
camera location also causes changes in panoramic images. 
These changes can be considered as noise during the 
capturing process. One solution is to consider the one-
dimensional texture across a small strip of the image, 
formalized as follows:  

For a given panoramic image with H  rows and W  
columns, it is first segmented row-wise into R  strips. For 
example, in Figure 4 panoramic image A and B  are 
segmented into R strips, each with H R  (rounded to an 
integer) rows. Then the image intensity of each strip is 

averaged at each column position to produce an “average 
row”.  Each value is the average of pixels in the same 
column position in the strip. That is, for an panoramic 
image strip matrix:   

,{ },1 ,1 ,i jPs P i H R j W= ≤ ≤ ≤ ≤  
where ,i jP is the pixel value at position ( , )i j in the strip, 
the corresponding average rows are:  

1 2 ,
1

( , ,... ,... ),  P
H R

sAV j W j i j
i

RP P P P P where P
H =

= = ∑ . (2) 

In Figure 4, 1 1, ,..., RA A A  and 1 1, ,..., RB B B  are used to 
represent these average rows for panoramic image A and 
B  respectively. In the end, the 1-D texture of a strip is 
computed as the magnitude spectra of the averaged row. 
This can be efficiently computed using the Fast Fourier 
Transform. For example, 

iAS , the 1-D texture-coefficient 

vector of iA  can be computed as ( )
iA iS FFT A= . 

Here, vertically averaging each image strips smoothes 
the row images, and improves the image matching 
robustness. The idea of 1-D texture is similar to those used 
for 2-D texture analysis [5]. The added complexity of 2-D 
texture is not necessary for good similarity measurements. 

 
2.2.2. Distance measure for 1-D texture 
The distance between two panoramic images is computed 
from the distance between corresponding average rows. 
Given two average strips iA  and jB , suppose their 1-D 
texture-coefficient vectors are 

iAS  and 
jBS , then their 

distance measure is defined as: 

Distance( , )
Max( , )

i j

i j

A B M
i j

A BM M

S S
A B

S S

−
=    (3) 

Where 
i jA B M

S S− is the Euclidean distance between the 

middle band of 
iAS  and 

jBS , where
iA M

S and 
jB M

S are 

the amplitude of vector 
iAS  and 

jBS  in middle band. 
In practice, the texture coefficients are truncated to 

middle frequencies, for a number of reasons. First, the DC 
and low-frequency components of an image spectrum is 
quite sensitive to changes in illumination. Second, the high 
frequencies tend to be noisy and are thus not useful for 
representation. Also, removing the high frequencies also 
helps to reduce the effect of object occlusion in a scene. 
Max( , )

i jA BM M
S S is used to normalize the distance. It 

is especially important when several pairs of average rows 
are used for comparison. In that case, the distance measure 
will not be biased toward pairs that have higher mid-
frequency energy.  

Since the distance measure proposed in (3) is already 
normalized, the distance between two panoramic images 

 
Figure 4. Segmenting panoramic images into 1-D texture strips. 



 

 

can then be computed as the sum of distances between 1-D 
texture pairs at the same row positions. It is formulated as: 

1
Distance( , ) Distance( , )

R

i i
i

A B A B
=

=∑   (4) 

Based on this distance measure, (1) can be used to detect 
the intersection of the paths.  

3. EXPERIMENTAL RESULTS 

A panoramic camera and a GPS receiver were mounted on 
a car to collect data. The car’s speed was typically 10 
MPH when crossing intersections. The time difference 
between the times when the car crosses the same 
intersection varies from less than a minute to half an hour. 
On several occasions the car passes the same intersection 
more than twice. 

The candidate panoramic frames were extracted from 
each path, limited to within 3 to 10 seconds of the 
estimated intersection point derived from the GPS data. 
Each panoramic frame was composited from four digital 
video frames, with a resultant dimension of 2384x448 
pixels. Every image is segmented into 8 strips, and the 
texture coefficients are computed using the FFT. After 
normalization, bands 2 to 100 were used for distance 
measure. 

Figure 2(b) shows the detected intersection at street 
X and Y , where 2X and 3Y are chosen as the intersection. 

The scene change is illustrated by the candidate images 
1Y , 2Y , 3Y  and 1X , 2X . There is an angle difference 

between 2X and 3Y , but the algorithm successfully locates 
the best match. Figure 5 shows two detected panoramic 
images at a major street intersection. The algorithm again 
successfully detects the correct intersection point despite 
the presence of a large truck in the image during the first 
pass through the intersection. 

So far, the algorithm has been tested on the panoramic 
video at city neighborhood settings. Altogether, one hour 
of panoramic video was captured, including 20 
intersections. The intersections from the video are first 
manually selected. Since it is quite subjective, if the 
computer-chosen frame at the intersection is within 2 

frames around the manual pick, then it is considered to be 
correct. It is found that the algorithm detects the 
intersections correctly in all the cases. 

4. CONCLUSION 

Manual search of intersections in a panoramic video up to 
an hour is prohibitive in practice. A novel method for 
automatic path intersection detection is presented. 
Detection of intersection of two paths is posed as the 
matching of candidate panoramic images from two paths. 
The intersection is chosen as the two candidate panoramic 
images that have the minimum distance. The distance 
measure is based on 1-D texture representation of 
panoramic images. Experiments have been taken on street 
panoramic video. Results show the method proposed here 
is robust and has a promising application future.  

Based on the work presented here, it is possible to use 
correlations to estimate angle difference between two 
crossing paths. This angle difference information can then 
be used to create virtual transition between paths. Other 
future work includes the detection of intersections from 
multiple paths at the same location.  
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Figure 5. A street intersection with large object occlusion. 


