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ABSTRACT

This work introduces a conceptual representation for com-
plex spatial arrangements of image features in large multi-
media datasets. A novel data structure, termed the Spatial
Event Cube (SEC), is formed from the co-occurrence ma-
trices of perceptually classified features with respect to spe-
cific spatial relationships. A visual thesaurus constructed
using supervised and unsupervised learning techniques is
used to label the image features. SECs can be used to not
only visualize the dominant spatial arrangements of feature
classes but also discover non-obvious configurations. SECs
also provide the framework for high-level data mining tech-
niques such as using the Generalized Association Rule ap-
proach. Experimental results are provided for a large dataset
of aerial images.

1. INTRODUCTION

As technology advances and more visual data are available,
we need more effective systems to handle the image data
processing and understanding. The framework must effi-
ciently summarize information contained in the image data;
it must provide scalability with respect to the nature, size
and dimension of a dataset; and it must offer simple repre-
sentations of the results and relationships discovered in the
dataset.

On the user side of the system, modelling of a high-
level human concept, such as a perceptual event, also raises
many research questions. Humans can instantly answer the
question “Is this highway going through a desert?” just by
looking at an aerial photograph of a region. This query, es-
sentially formulated as a high-level concept, cannot be an-
swered by most existing intelligent image analysis systems.
Existing image representations based on low-level features
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fail to capture perceptual events. Meaningful semantic anal-
ysis and knowledge extraction require data representations
that are understandable at a conceptual level.

This paper presents an approach to spatial event repre-
sentation and image analysis at a conceptual level. Section
2 describes the image representation model; Section 3 de-
scribes the analysis model, knowledge discovery and anal-
ysis techniques; Section 4 presents conducted experiments;
and we conclude with a discussion in Section 5.

2. VISUAL THESAURUS

An image analysis framework requires a representation that
allows fast data processing, meaningful data summariza-
tion, scalability with respect to dataset size and dimension,
multi-feature representation, and efficient data understand-
ing. Limited success towards this end has been achieved by
systems that use low-level visual features, such as texture
and color descriptors, to represent the images. However,
these systems fail to support high-level perceptual interac-
tion. A visual thesaurus provides summarized data informa-
tion derived from the low-level features [1].

2.1. Image Features

The first step in constructing a visual thesaurus is feature
extraction. Feature extraction is localized by partitioning an
image into tiles. Regular partitioning is a simple alternative
to segmentation that allows straight-forward feature extrac-
tion and provides a simple spatial layout.

An MPEG-7 [2] compliant homogeneous texture feature
vector is extracted for each tile. The 62-dimension feature
vector is composed of the first and second order statistics
of Gabor filter outputs and Euclidean distance is used the
similarity measure. The MPEG-7 homogenous texture de-
scriptor effectively captures visual similarity as shown in
the online MPEG-7 demonstration [3]. Other features can
be similarly extracted from the tiles.
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Figure 1: Data Classification Example

2.2. Feature Classification

The second step in constructing a visual thesaurus is feature
classification. Conceptually, visually similar tiles are as-
signed the same class label by partitioning the high dimen-
sional feature space. This is accomplished using a combi-
nation of supervised and unsupervised learning techniques.

A set of training tiles is used to configure a Kohonen
Self-Organizing Map (SOM). An SOM converts complex,
nonlinear statistical relationships between high dimensional
data items into simple geometric relationships on a low-
dimensional display, while preserving the topological lay-
out of the feature space [4]. The output nodes of the SOM
are labelled using the training set and a majority-vote prin-
ciple [5]. The labels are manually assigned to a training set
so that adjacent class numbers correspond to visually sim-
ilar classes. An example of three training tiles from two
agricultural classes is shown in Figure 1.

An initial set of class clusters is formed by using the
trained SOM to label each of the dataset features. The Learn-
ing Vector Quantization (LVQ3) algorithm is iteratively ap-
plied to refine the class clusters [4]. LVQ is a supervised ex-
tension of the winner-take-all algorithm [4]. The supervised
learning stage of the feature classification is summarized in
the following:

Algorithm 1 Feature Classification
SOM summarizes input training feature space;
label SOM output using training set;t = 1.
while (t ≤ T ) do

LVQ fine-tuning of class boundaries;
re-assign labels using majority-vote approach;
t = t + 1

end while

The unsupervised learning stage of the feature classifi-
cation further partitions the classes into sets of codewords,
as described next.

2.3. Thesaurus Entries

High-dimensional feature spaces are usually very sparse so
that enforced space partitioning, such as that described above,
frequently clusters visually dissimilar features into the same
class. Data partitioning via the Generalized Lloyd Algo-
rithm [6] is used to further split the classes into more con-
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Figure 2: Spatial Event Cube

sistent clusters. A representative codeword is selected for
each cluster and forms the visual thesaurus entry. The re-
maining cluster features are synonyms of the codeword and
receive the same codeword label.

3. SPATIAL EVENT MINING

The motivation for building a spatial event data structure
is to discover interesting spatial patterns in extended im-
age datasets. Towards this end, we introduce SECs, a novel
data representation obtained by applying spatial predicates
to image features labelled using the visual thesaurus.

3.1. Spatial Event Cubes

Spatial Event Cubes are a scalable approach to mining spa-
tial events in large image datasets based on the spatial co-
occurrence of perceptually classified image features. De-
fine the image raster spaceR, for an image partitioned into
M ×N tiles, as:

R = {r̄|r̄ = (x, y), x ∈ [1,M ], y ∈ [1, N ]}
Spatial relationships between coordinates in an image can
be defined as a binary relationρ, ρ : R × R → {0, 1}, or
PρQ ∈ {0, 1}, where P, Q ∈ R. Figure 2(a) shows an
example of binary relationρ, where isρ defined as a spatial
function of distance and direction.

Consider the set of thesaurus entries defined asT , i.e.
T = {ui|ui is a thesaurus entry/codeword}. Let τ be the
function that maps image coordinates to thesaurus entries,
i.e. τ : R → T , or τ(P ) = u, where P ∈ R and u ∈ T .

A face of a Spatial Event Cube is the co-occurrence ma-
trix Cρ(u, v) of thesaurus entries(u, v) ∈ T of all points
whose spatial relationship satisfiesρ:

Cρ(u, v) = ‖(P,Q)| (PρQ) ∧ (τ(P ) = u) ∧ (τ(Q) = v)‖
Figure 2(b) shows the structure of an SEC.Cρ(u, v) is

the number of tiles with thesaurus entriesu andv that sat-
isfy spatial relationshipρ. A multi-modal SEC structure is a
hypercube whose dimensions are defined by image features
extracted from the image tiles. A three-dimensional exam-
ple, with two texture axes and one color axis, is shown in
Figure 2(c).
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Figure 3: Homogenous Texture Region Analysis in an
Image Dataset - SEC Visualization

3.2. Generalized Association Rule

Association rules were introduced as a way of discovering
interesting patterns in transactional databases [7]. Frequent
item sets are identified using the Apriori algorithm and the
most “interesting” rules are selected based on confident fac-
tors [8]. Thesaurus entries and their spatial relationships
define a non-traditional space for data mining applications.
This space can be used to discover interesting rules such as
the spatial co-occurrence of orchard and housing regions in
aerial images. SECs allow us to extend the traditional asso-
ciation rule approach to multimedia databases.

An attribute value setT containsN thesaurus entriesui.
The SEC entriesCρ(u, v) mark the frequency of codeword
tuples that satisfy binary relationρ. DefineF ρ

K as a set of
frequent item sets of sizeK. Multiple entry item sets, for
K > 2, will reduce to ones of smaller order, with different
entries. DefineS(K)

ρ as a minimum support value for item
(u1, u2, ..uK), (u1, u2, ..uK) ∈ F ρ

K . Our goal is to find
F ρ =

⋃
K F ρ

K , i.e. sets of tuples that show some depen-
dency among tile spatial configurations. An outline of the
extended association rule algorithm for spatial relationships
follows:

Algorithm 2 Generalized Association Rule
1. Find frequent item sets;
F ρ

1 = {ui|Cρ(ui, ui) > S
(1)
ρ }

F ρ
2 = {(ui, uj)|Cρ(ui, uj) > S

(2)
ρ }

for (K = 3; F ρ
K 6= Ø; K + +) do

Candidate K-item frequent itemset is formed ofK
joint elements from any frequentF ρ

K−1 item set;
FormF ρ

K from candidates that satisfy the following:
a. ordering rule of item indices;
b. minimum support rule;

end for
F ρ =

⋃
K F ρ

K .
2. Use the frequent itemsets to generate rules.

The following experiments demonstrate the use of SECs
for mining spatial relationships in a large image dataset.

i 22 32 26 35 41
Cρ(ui, ui) 24298 20970 18030 8368 7133

Table 1: Codeword Elements of the First-order Item Set
F ρ

1 and Corresponding Frequencies

(i, j) 26,2 32,11 22,8 26,46 332,315
Cρ(ui, uj) 855 672 633 552 445

Table 2: Codeword Elements of the Second-order Item Set
F ρ

2 and Corresponding Frequencies

4. EXPERIMENTS

The proposed visual mining framework is applied to a dataset
of 54 large aerial images of the Santa Barbara region. The
MPEG-7 homogeneous texture descriptor has shown to be
effective at characterizing a variety of land-cover types from
this dataset [3]. Each 5248x5248 pixel image is divided into
128x128 pixel non-overlapping tiles resulting in a dataset
of 90,744 tiles. A 62-dimension texture feature vector is
extracted for each tile.

A visual thesaurus of the tiles is constructed, as described
in Section 2. A set of manually labelled tiles is used to
train the supervised learning stage of the classification algo-
rithm (Section 2.2). This training set contains 60 land-cover
classes, such as agricultural fields, water, parking lots, etc.
The 60 classes are further partitioned into 308 codewords
using the data clustering techniques described in Section
2.3. These codewords form the thesaurus entries. Every
tile in the dataset is labelled with one of these codewords.

SECs are constructed using tile adjacency as the spatial
relation. Adjacency is defined as the 8-connectivity neigh-
borhood.

4.1. Visualization

The dominant spatial arrangements of the labelled image
tiles over the entire dataset are readily observable from the
SEC faces or cross-sections. An SEC faceplate subspace
can be visualized as a three-dimensional graph or a two-
dimensional image, as shown in Figures 3(a) and 3(b) re-
spectively. The X and Y axes of the graph correspond to
classes and the Z axis indicates the relative co-occurrence
of two classes with respect to the spatial relation. When
an SEC faceplate is viewed as an image, the co-occurrence
value corresponds to image intensity.

Figure 3 shows a faceplate of the SEC for the 60 classes
in the aerial image dataset using adjacency as the spatial re-
lation. We expect large homogeneous regions in the dataset
to result in large values along the diagonal of the faceplate.
The spike in Figure 3 corresponds to the ocean class. This
makes sense since the aerial images contain large regions of
the Pacific Ocean.
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Figure 4: Codeword Tiles Corresponding to the Most
Frequent Elements in the First-order Item SetF ρ
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Figure 5: Codeword Tiles Corresponding to the Most
Frequent Elements in the Second-order Item SetF ρ

2

4.2. Mining

The most frequent first and second order codeword item
sets for the aerial image dataset are presented in Tables 1
and 2, respectively. The item sets are computed using the
308 codewords of the visual thesaurus and adjacency as the
spatial relation. The most frequent elements of the first or-
der item setF ρ

1 correspond to homogeneous regions. Fig-
ure 4 shows the corresponding visual thesaurus codewords,
namely pasture and ocean tiles. Higher order item sets pro-
vide information about adjacencies between tuples of code-
words. Figure 5 shows the visual thesaurus codewords for
the most frequent elements of the second order item setF ρ

2 .
Figure 6 shows a combination of the the most frequent tu-
ples and triples. Ocean and pasture tiles exhibit composite
spatial arrangements.

5. DISCUSSION

This work introduces a novel approach to spatial event rep-
resentation for large image datasets. Image features are
classified using supervised and unsupervised learning tech-
niques. Spatial relationships between the labelled features
are summarized using Spatial Event Cubes. SECs are shown
to be effective for visualizing non-obvious dataset spatial
characteristics such as frequently occurring land-cover ar-
rangements in aerial images. SECs also support the exten-
sion of the General Association Rule approach to multime-
dia databases to identify frequently occurring item sets.

We are using SECs to summarize other sizable datasets,
such as a multi-terabyte collection of aerial videos of Ama-
zonia. Future research includes using SECs to construct ef-
ficient index structures for multimedia database access.
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Figure 6: Composite Spatial Arrangement of Ocean and
Pasture Tiles in an Aerial Dataset
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