
MODELING OBJECT CLASSES IN AERIAL IMAGES USING HIDDEN
MARKOV MODELS

Shawn Newsam, Sitaram Bhagavathy, andB. S. Manjunath

Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106.

{snewsam, sitaram, manj}@ece.ucsb.edu

Abstract

A canonical model is proposed for object classes in aerial
images. This model is motivated by the observation that
geographic regions of interest are characterized by collec-
tions of texture motifs corresponding to geographic pro-
cesses. Furthermore, the spatial arrangement of the motifs is
an important discriminating characteristic. In our approach,
the states of a Hidden Markov Model (HMM) correspond
to the geographic processes and the state transitions corre-
spond to the spatial arrangement of the processes. A one-
dimensional approach reduces the computational complex-
ity. The model is shown to be effective in characterizing
objects of interest in spatial datasets in terms of their under-
lying texture motifs. The potential of the model for identi-
fying the classes of unlabeled objects is demonstrated.

1. INTRODUCTION

Researchers have shown significant interest in using texture
descriptors for the automated analysis of aerial images [1, 2,
3]. Homogeneous texture descriptors [4] have been shown
to be effective in characterizing a variety of basic land types,
such as water, agricultural fields, etc. The work presented
in this paper is progress toward using texture descriptors for
image analysis at the object level.

Textures have the capacity to describe distinct spatial
signatures resulting from many natural and man-made ge-
ographic processes that create objects of interest. For ex-
amples, a distinct texture results from grassy areas which
constitute golf courses and parks. A major challenge in us-
ing homogeneous texture features is that the objects in spa-
tial datasets usually consist of multiple textures. Grass and
trees each result in distinctive textures but neither feature
by itself characterizes a golf course. Hence, objects must be
characterized by sets of texture themes, or motifs.

Importantly, the geographic processes have distinct and
structured spatial arrangement. Object models should con-
sider the spatial arrangement of the texture motifs. Both

golf courses and parks have grass and trees but it is the ar-
rangement of these features that differentiates one from the
other. Analyzing the spatial arrangement of the entire object
region is computationally challenging so analysis is often
restricted to context or adjacency, such as Markov frame-
works for statistical methods.

The major contribution of this work is a model that uti-
lizes multiple textures to characterize image regions. In par-
ticular, texture motifs and their spatial arrangement are used
to discover and characterize the set of geographic processes
that create the objects of interest. Experimental results show
that the technique characterizes many objects of interest in
spatial datasets, such as airports, harbors, etc.

Statistical methods have been used to represent the spa-
tial arrangement of image features. In [5], 2-D HMMs are
used to perform binary classification of image blocks. The
block feature vectors and spatial context are used to estimate
the parameters of a 2-D HMM. The model is then used to
classify unlabeled blocks. Results are presented for classi-
fying aerial images into man-made and natural regions and
for classifying document images into text and graphic re-
gions. In [6], 2-D HMMs are used to learn the statistical
models of individual images. A statistical distance measure
between images, based on the similarity of their statistical
models, is used for classification and retrieval tasks.

In Section 2, we motivate the analysis of texture motifs
in object modeling. In Section 3, we describe an HMM-
based object model, along with some applications. We present
some experimental results in Section 4 and the concluding
arguments in Section 5.

2. TEXTURE MOTIF ANALYSIS OF OBJECTS

We start with the basic assumption that geographic regions
of interest are characterized by collections of texture mo-
tifs corresponding to geographic processes. Users of geo-
graphic image collections often need to retrieve information
on semantically relevant classes of regions, which we term
objects, e.g. airports, mobile home parks, etc.



There exist several systems that perform region-level [7]
and crude object-level [8, 9, 10] image content retrieval us-
ing properties of homogeneous region segmentations. How-
ever, the problem of modeling a general set of semantic
classes is still unsolved.

3. MODELING OBJECT CLASSES

A good model for an object class should (1) capture the tex-
ture motifs that characterize it, and (2) effectively identify
objects that belong to that class. We model an object class as
a combination of horizontal and vertical 1-D HMMs, where
a many-to-one mapping may exist between the states and
the texture motifs that characterize the class. We call our
model, thecanonical class model(CCM) for object classes.

3.1. Previous Work

In previous work [11], we only consider the statistical char-
acteristics of the texture motifs and not the spatial arrange-
ment. Gaussian Mixture Models (GMMs) are used to char-
acterize the object classes. Homogeneous texture feature
vectors are extracted from object instances. The model pa-
rameters, namely the distribution means and covariances,
are estimated using the Expectation-Maximization algorithm.
The models are then used to characterize novel object in-
stances.

3.2. The Canonical Class Model Using HMMs

Homogeneous texture feature vectors [4] are extracted by
applying a set of Gabor-wavelet filters (at 5 scales and 6
orientations) to the object images. To reduce computational
complexity, we divide the images into 4× 4 pixel blocks
and observe only the averaged feature vectors from these
blocks. The details pertaining to how we obtain and repre-
sent objects are provided in Section 4.

The canonical model consists of a horizontal HMM
(HHMM) and a vertical HMM (VHMM), separately trained
using the observations from the rows and columns, respec-
tively, of the objects. To construct the HHMM and VHMM,
we make the following assumptions.

The first assumption is that each row and column of ob-
servations (feature vectors) are first order Markov chains,
i.e.,
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The second assumption is that for every states, the ob-

servationsy follow a Gaussian distribution,
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whered is the dimensionality of the data,Σs is the covari-
ance matrix, andµs is the mean vector.

3.2.1. Training the Model

Given a training set of object instances from a class, the
step-by-step process of constructing the canonical class
model is as follows:

1. Divide each object in the training set into 4× 4 pixel
blocks and obtain the averaged feature vector for each
block.

2. Estimate the model parameters{aH
m,n,Σm, µm;

∀SH
m , SH

n } of the HHMM using the horizontal ob-
servation chains from the rows of all objects. The
number of states for the modelMH is manually cho-
sen depending on the visual complexity of the object
class. Initialization is random.

3. ChooseMV . Estimate the model parameters of the
VHMM using the vertical observation chains from
the columns of all objects.

3.2.2. Texture Motif Identification

After training the canonical model for a class, we use the
model to identify the texture motifs that characterize this
class. Given a test object from a class, and the model for
this class, the following novel method is used to identify the
texture motifs:

1. Divide the test object into 4× 4 blocks and obtain the
averaged feature vector for each block.

2. For each horizontal observation chain, determine the
state path with maximum a posteriori probability, us-
ing the Viterbi algorithm. This step gives us the hor-
izontal state assignmentsqH

i,j for each block (i,j) in
the test object.



(a) (b) (c)

Fig. 1. Instance of (a) the harbor class, and (b) the golf course class, both showing texture motif assignments; and (c) the
co-occurrence histogram of the state assignments for the harbor instance. The two tallest spikes correspond to the water and
moored boats motifs.

3. Repeat Step 2 for the vertical observation chains, to
get the vertical state assignmentsqV

i,j .

4. The state assignment of each block is then given by
an ordered pair,

qi,j = {qH
i,j , q

V
i,j}. (4)

5. For the given object, construct the co-occurrence his-
togram of theMH horizontal states andMV vertical
states,

pm,n = P [qH
i,j = SH

m , qV
i,j = SV

n ]. (5)

The pm,n corresponding to spikes in the histogram
values (greater than a fixed threshold) identify the tex-
ture motifs that occur frequently in that class, and
therefore characterize it.

The spikes in the co-occurrence histogram are due to
the multiplicative nature of the classifications from the hor-
izontal and vertical HMMs. Note that this procedure also
empirically determines the number of texture motifs that are
predominant in a class.

3.2.3. Object Classification

Given a test object, the models forN classes, and the knowl-
edge that the test object belongs to one of these classes, the
following method is used to classify the test object:

1. Divide the test object into 4× 4 blocks and obtain the
averaged feature vector for each block.

2. For eachith horizontal observation chain, and using
the HHMM model for thenth class (n = 1, ..., N ),
determine the log-likelihoodLH

n,i, that the observa-
tion belongs to the model.

3. Repeat Step 2 for the vertical observation chains, us-
ing the VHMMs, to getLV

n,j .

4. Calculate the classwise average of the log-likelihoods
LH

n,i andLV
n,j over the whole object,
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whereR is the number of horizontal chains andC is
the number of vertical chains.

5. The class of the object is that with the minimum ab-
solute value ofln; n = 1, ..., N .

4. EXPERIMENTAL RESULTS

We present here the preliminary results of our work. The
dataset contains five classes of objects from the Digital Or-
thophoto Quarter-Quadrangle (DOQQ) coverage of Califor-
nia: airports, golf courses, harbors, mobile home parks, and
vineyards. For each object instance, we extract a rectan-
gular image region and manually create a binary mask to
define the object boundary.

We train the HHMM and VHMM for each class using 6
object instances from that class. We chooseMH = MV =
4 for simplicity. The test set for each class has 4 objects
which are not present in the training set. Figure 1(a) shows
a test harbor object in which the identified texture motifs are
shaded with different colors. The model captures the signif-
icant motifs, in this case the moored boats and the water.
Figure 1(b) shows a test golf course object. The significant
motifs are now the grassy fairways, trees, and sand-traps
and paths. Figure 1(c) shows the co-occurrence histogram
of the state assignments for the object in Figure 1(a). We
observed that the two tallest spikes correspond to the water



and moored boats motifs, which are the characteristic tex-
ture motifs for harbors.

Table 1 shows the results of the object classification
method described in Section 3.2.3. The columns stand for
the models, and the rows for test classes. The entries in the
mth row andnth column denotes the normalized, absolute
value of the averageln using the test set for classm. The
minimum value for each row is shown in bold font. Note
that the test classes give minimum values for their corre-
sponding class models.

5. CONCLUSION AND FUTURE WORK

We have proposed a canonical class model for object classes
in aerial images. Initial experiments show that the model
succeeds in capturing the texture motifs that globally char-
acterize object classes. We are investigating whether the
model generalizes well to other object classes. Because
the model globally analyzes the class, we expect it to de-
emphasize irrelevant textures that occur in a few instances,
but do not characterize the class in general.

A merit of our approach is that by using horizontal and
vertical 1-D HMMs in conjunction, we incorporate spatial
context information in the model while avoiding the com-
plexity of a 2-D HMM.

The next level of abstraction in the canonical class model
is to analyze the texture motifs semantically. This would in-
volve mapping the motif labels to named motifs like grassy
area, road, water, housing development, etc. We expect that
this analysis will be useful to research problems like au-
tomatic object segmentation, object-based image retrieval,
etc.
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Table 1. Object Classification Results: The entries are the
average, absolute, normalized log-likelihoods of test class
m belonging to class modeln (A-airports,B-golf courses,
C-harbors,D-mobile home parks, andE-vineyards).

MODEL
A B C D E

ClassA 0.7502 0.8250 0.9176 1.5910 0.9872
ClassB 0.6921 0.5855 0.6666 1.0202 0.7349
ClassC 0.5998 0.5199 0.3564 0.7838 0.6188
ClassD 0.6810 0.5223 0.4733 0.3594 0.6155
ClassE 0.1873 0.2006 0.2240 0.2631 0.1639
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