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highly-correlated predictive modelstedictive decorrelators do Peer Group Image Enhancement
not guarantee compression _
H™"(n, p) curves for different values of andp > 0.5 con- C. Kenney, Y. Deng, B. S. Manjunath, and G. Hewer

verge to the straight lin& ™ *(n, p) = 2(1 — p) (Fig. 4). Itis
interesting to observe that asncreases, the highest (best-case) ) o . y
g . Abstract—Peer group image processing identifies a “peer group” for
value of H," (n, 0) also decreases toward 1. Fig. 4 suggests f%ré\ch pixel and then replaces the pixel intensity with the average over the
largen peer group. Two parameters provide direct control over which image fea-
tures are selectively enhanced: area (number of pixels in the feature) and
. window diameter (window size needed to enclose the feature). A discussion
2 is given of how these parameters determine which features in the image are
1 smoothed or preserved. We show that the Fisher discriminant can be used
to automatically adjust the PGA parameters at each point in the image.
) ) . This local parameter selection allows smoothing over uniform regions while
with only a 5% numerical error for > 128 inthe0 < p < 0.5  preserving features like comners and edges. This adaptive procedure ex-
interval, and an exact numerical match for- 0.5. From here, tends to multilevel and color forms of PGA. Comparisons are made with
asp > 0.5 a variety of standard filtering techniques and an analysis is given of com-
putational complexity and convergence issues.

Hinf(n p) ~ 1
r 21—p) O

1 1 Index Terms—mage enhancement, image smoothing, noise removal,

C*P(n, p) = C*"**(n, p) = = = 1. (9) nonlinear filtering.

CHPM(n,p)  2(1-p)

This implies that, first, for large: andp > 0.5, predictive |. INTRODUCTION
models are guaranteed to not increase the entropy for anyNoise removal and image smoothing are useful pre-processing steps
inter-image correlation. Second, an elegant numerical resiftmany image processing applications. A general objective in these
follows for the best-case predictive compression ratio. Singgplications is to suppress noise while preserving the edge information.
C™"®(n, po) = Cy gives the lowesp = po such that predictive Typically, additive Gaussian or impulse noise models are assumed.
modelsii, po—correlated to some imagesin (1), can deliver  Median filtering is a popular choice for impulse noise removal (see
Cy effective compression (see Proposition 1), solving (9)dfor the tutorial paper [24] by Yiret al. which includes an extensive bibli-
yields the following. ography for this area). Median filtering forms an approximatioof

Proposition 3: Effective compression rati6' = C, (2) cannot be a0 imagey by passing a window of sizé x d overg and taking the
achieved with (1) when model-to-image correlation median intensity of the window at pixel locatiéras the value for;.

The motivation for this type of filtering is that the median preserves

1 edges (intensity discontinuities). Other related work can be found in
plu, i) <1 — —. [1], [10Q], [11]. Extensions to color and multidimensional signals in-
2Co clude the vector median filter (VMF) [2], vector directional filtering
(VDF) [22], and the directional distance filtering (DDF) [8]. The DDF

This holds true foany number of intensity levels. In particular, s a combination of VMF and VDF. A common drawback of all these
any predictive compression is impossible fr, @) < 0.5 (Co = 1);  above methods is that they are typically implemented uniformly across
2:1 compression is impossible fofu, @) < 0.75 (Co = 2),and 3:1  the image and tend to modify pixels that are not corrupted by noise.
compression is impossible fp(u, @) < 5/6 (Co = 3) (compare to | [3] a Teager-like operator is used to first detect the outliers so that
Proposition 1 and Table I). only the noisy pixels are replaced. The detection is performed in each

(1]

(2]

E]

[4]
(5]

individual color component which may lead to errors in the overall

color. For the case of mixed Gaussian and impulse noise, an adaptive

nonlinear multivariate filtering method is proposed in [21]. It uses the

mean value within a local neighborhood of pixels to estimate the orig-
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The weights associated with the two components play a significaftis is the 1-D version of the idea that the zeros of the Laplacian serve
role in the resulting enhancement quality, and an often encounteesiboundary points for images. While the peer group size two is too
problem is the selection of these weights. It is not clear how to selexchall to be of practical value, the primary motivation for the following
good values for the weights associated with the smoothness amdlysis is that it establishes a connection between PGA and shock fil-
approximation terms. tering (see Section IlI-A).

In shock filtering [17]-[19], intensity values from the interior of Assume thay is a monotonically increasing 1-D signal. The peer
regions move outward toward the region edges along gradient lingsoup for pixeli is determined by nearness of intensity valueg;tan
The convexity of the intensity along the gradient direction determineases of ambiguity caused by equal intensity differences, we select the
the motion direction along the gradient and this direction assignmeyger group to minimize the distance of the peer group members from
means that when two regions meet at an edge, the image intensity pikel ¢, with preference to the right if necessary.
experience a jump. Thus the edges of the image correspond to std-emma 1: Let ¢ be monotonically increasing ovét, n] with a
tionary shock fronts for this type of image processing. Note that thange in convexity at: g;—1 — 2¢; + gi+1 > 0 fori < k, and
shock filtering the maximum values of the image intensity and the mip;—; — 2¢; + ¢:+1 < 0 for i > k. Then the PGA algorithm with
imum values move outward from the interior of their regions to meet peer groups of size 2 and windows of size 3 applied tnverges to
the boundaries. This means that the contrast at the edges is maximiagoimodal piecewise constant functianThe point whergy changes
This also means that shock filtering preserves the total variation of tbenvexity (- = k) is also the boundary point for the two constant re-
original image. Shock filtering smoothes in the sense that each reggions ofu: u;, = (g1 + g2)/2 for¢ < k, andu; = (gn—1 + g.)/2 for
assumes a constant value. However, shock filtering does not reméve k.
isolated noise such as salt-and-pepper noise, as discussed by Osher d@roke proof is outlined in Appendix A. For general signalsgifs
Rudin in [17]. convex or concave in the intervaldefined byk, < i < ki then the

We propose a nonlinear algorithm for image smoothing and impulB&A algorithm with peer group size 2 and window size 3 converges
noise removal that addresses the above mentioned drawbacks ofttha constant value in the intervall. Thus the PGA algorithm con-
current methods. The proposed method is based on the idea that e&ches to a piecewise constant function with the regions of constancy
pixel has a peer group of associated nearby pixels. The peer groudesermined by the convexity breakpoints (i.e. those points for which
then used to modify the value of the pixel. gi—1 — 2g; + gi4+1 changes sign) of the original functign This is il-

There are many ways to select the peer group for a given pixel. Hostrated in Example 2 which compares PGA and median filtering for
example, see the earlier work by Yaroslavsky [23] presenting an abGaussian hump.
stract formulation of the group idea. In general, peer group members
should share some common values. For a single image, the peer g®upConvergence for Fixed PGA

may be nearby pixels with similar intensity values. For a sequence ofIn the course of testing numerical examples under the PGA algo-

images used in determining optical flow fields, the peer group can i, we observed that the peer groups can change significantly during
nearby pixels (in time and space) with similar intensity values and sifgye first ey iterations. This is then followed by a period during which
ilar velocity values. In another context, texture values may be assigngd e is jittie or no change in the peer group structure. The nonlinearity
to each pixel and the peer group determined by nearness in texiyfg,o pGa algorithm is tied solely to the selection of the peer group
space. In this paper we will use the following peer group definition. .o hers. For ease of analysis we consider a modified version of the

'?ef'r,"“oni_ Foran Image, tI_1e peer grqu;ﬁ’(7z, d) assom'ated with PGA algorithm in which membership in the peer groups is fixed after
apixeli consists of the: pixels in ad x  window centered atthatare 5 cortain number of regular PGA steps. The following gives a conver-
nearestin intensity to(i). Peer group averaging (PGA) is the proces§e e result for this “fixed” PGA approach and applies to both 1-D and
of replacingg(¢) with the average over its peer grofitjn, d). 2.D signals (images).

In the next section we discuss the stability and convergence of thel_emma 2: Let the sequence;. be generated using the PGA algo-
PGA method. The interplay between the window size (the parame}ﬁﬁm’ starting fromuo = g, with fixed peer groups for each pixel after

d in the above definition), peer group size, and the characterlstlcsi rationko. Then the sequenae, converges to a limiting image.

the image objects i§ discussed'in Section Ill. This iS-fO||0V\.Ied by a Pro-proof: After the peer groups are fixed the PGA iteration can be
cedure for automatically selecting the peer group size using the Fishgfian, aser.1 = Axi. where the vector, is formed by stacking

discriminant in Section IV. In Section V we extend the PGA to Col0f,o columns of the image,. and the matrix4 does the peer group
images. Section VI presents a multilevel approach to PGA. We COfzeraging. (Thus PGA is linear after the peer groups are fixed. This
clude in Section VIl with discussions. permits the following analysis.) The entries of the rowsio$um to 1
and consist of either 0 dr/n, wheren is the peer group number. We
Il. CONVERGENCE OFPGA say that a subset of pixels isstrongly connectedr irreducibleif 1)

. . . . . i € Simplies that the peer group faiis also inS, and 2) for anyi and
PGA is stable in th that th I valueratst lie be- ' € 2 IMP peer group
'S Stable In Ie Sense that e New PIXE. va LUsMustie be- in S there is a path irb from ¢ to j and a path FROM to i. That

tween the maximum and minimum intensities in the window of sizé L o R
d x d centered at. In practice we find that PGA converges quickly'>’ there are pixels;, - - -, i, in 5 such that, is in the peer group of
and that after two or three iterations little additional change occurs. Zﬁﬁ“ _forp =ltop= me Lwith i, = z_andzm_: J, and vice verse.
though the nonlinear aspects of PGA make a general convergence a Q?— image may contain one or more irreducible subsets. For reasons
ysis difficult, we establish convergence for a modified form of PGA ir?ihat will become clear below we refer to these subsets aprifreary

: - ) . .__irreducible subsets of the image.
which the peer group membership is fixed after the first few iteration'
peergroup P For any irreducible subsef the iterationz,1 = Az, becomes

irp1 = Az, wherei are the pixel intensities iS5 and A is an ir-
reducible nonnegative matrix with row sums equal to 1. Applying the
We begin by considering the behavior of the PGA scheme on morf@erron—Frobenius Theorem [16], we see théias a simple eigenvalue
tone signals. The analysis shows that PGA for peer groups of size tafdargest modulus and all other eigenvalues are of smaller modulus.
and windows of size three converges to a piecewise function with theote that we have used the fact that the main diagonal entrigls of
breakpoints at the zeros of the second derivative of the original signale positive to establish that the dominant eigenspace has dimension

A. One-Dimensional Monotone Signals
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one; see [16, Ths. 6.1.4 and 6.1.5 p. 219].) Because the row sums atfeelentire window is the peer group. Averaging over the entire window
we havel ... (A) = 1 with associated eigenvector= (1, ---, 1)”.  blurs the image. Informally we can say then that as the peer group size
Thus#,4x, = A™ir,, which is just the power method [20]. Sinceincreases so does the smoothing effect under PGA. This leads us to the
the dominant eigenspace has dimension one, the power method aate of thumb: to obtain maximal smoothing while preserving an object
verges and;, converges ta: = cv wherec is the projection oft,  of sizen(O) use a peer group of size= n(O). For more details, we
ontov; i.e., c is the average of the entries ©f,, . refer to [5].
Now repeat this for each irreducible subset of pixels. From this anal-We now consider some examples illustrating the performance of
ysis we see that the limiting imageunder the PGA algorithm is con- PGA on 1-D and 2-D signals.
stant on each primary irreducible region of the image. Example 1: This is a signal consisting of two steps of different
The remaining pixel intensities satisfy a recursion of the forrheights and widths; see Fig. 1(a). Fig. 1(b) shows the original signal
&r41 = Ay + by whereb, represents the contribution to the averplus N (0, 3) noise. The result of using PGA on the noisy data with
aging of the irreducible sets of pixels. Again determine the irreducible= 9 andd = 17 is shown in Fig. 1(c). Since the peer group number
subsets of pixels with respect th. These subsets are teecondary is less than the object number (the intervals are of length 10 and 20
irreducible subsets of the image. The PGA iteration on these subsespectively) the steps are preserved. However, when we set the peer
has the forn,, = AT, + b, whereA is irreducible with positive group number tox = 11 which is larger than the shorter of the step
main diagonal entries equal tgn wheren is the peer group number. intervals then as expected we lose the small step, as seen in Fig. 1(d).
Since at least one row o sums to less than 1 (this is true of anyHere we used = 2n — 1 = 21 for the window diameter.
row with a nonzero entry i) the spectral radius afl is less than Fig. 1(e) and (f) shows the results of applying adaptive PGA (de-
1 by the Perron—Frobenius Theorem (see [16, Theorems 6.1.4 aadbed in Section V) for windows of sizes= 11 andd = 21 re-
6.1.5p. 219]). Lett = (I — A)™'b. ThenTs1 — T = A(T, — T). spectively with the best peer group number selected at each pixel from
Sincep(A4) < 1 the differencer;, — T must converge to zero, i.65;,  the rangeowe, = (d + 1)/2 t0 nupper = d — 1. These choices on
converges ta. the lower range have the effect of eliminating objects of size less than
Thus the limiting image on the secondary irreducible subsets of the ... and hence when,..... = 6 as in Fig. 1(e) the steps are pre-
image is determined by the constant values on the primary irreduciskerved. However when..... = 11 as in Fig. 1(f) then the steps of
subsets. Repeating this process for tertiary and higher irreducible sitre 10 are lost.
accounts for all the pixels and completes the proof. We also note that a similar example has been studied by Oman
[15] using a variety of approximation methods including Sobdigv
reconstruction, total variation approximation, low pass Fourier recon-
IIl. PROPERTIES OFPGAAND PARAMETER SELECTION struction, and wavelet methods (in which de-noising in the manner
For PGA there are two parameters: window size/ and peer group of Donoho and Johnstone [6] was used for Harr and Daubet_:hies
numbern. We can make some general points about selecting the pééivelets). The PGA results for = 3 are superior to (or approxi-
group size by considering a particular example. First suppose thafigtely the same in the case of the total variation method) the results
a window of sized, the central pixel is part of group of pixels of reported by_Oman. It can b(_a further noted _tha_t the PGA results do not
the same intensity. Let us refer to this group of pixelagor ob- US€ any estimate of the variance of the noise in the data.
ject) and define:(O) = IV as the number of pixels i?. For example The . next example compares median filtering with PGA for a
O might be a line or corner or even a disconnected group of pixels #ussian hump. _ _
the window. If the rest of the pixels in the window have intensities that Example 2: Let g be the Gaussian function(z) = e
differ from the common intensity i) then the result of peer group F9- 2(2) showsy for ¢ = 10. Fig. 2(b) shows the PGA approxima-
averaging depends critically on whether the peer group numlier tionw forn = 2 andd = 3. The break points im occur atr = +o
greater tham (O) or not. Ifn < n(O) then the peer group for the cen-Which are also the zero-crossings of the Laplaciag. ¢ contrast the
tral pixel will consist of pixels ir0 and the average over the peer groupnedian filter results do not depend on the variance of the Gaussian; in-
is equal to the common intensity value overHowever ifn > n(0) Stéad the breakpoints are determined entirely by the window diameter
then the peer group must include some pixels outside.dfotentially @S Seen in Fig. 2(c) for a window of size= 11 and Fig. 2(d) for a
the average might still equal the common value avefhigh and low  Window of sized = 51. _
values cancel but in the generic case the average over the peer grodp<@mple 3: Fig. 3(a) shows a lace image from the Brodatz texture
will differ from the common value oved. Thus a necessary condition@lbum. This image gives a nice illustration of how to preserve lines
for preserving the intensity of the central pixekis< n(0O). vv_hile smoothing interior regions. The thin stems in the image are 2
To illustrate, in a3 x 3 window, if O is a straight line of width one PiXels wide. Using: = wd to preserve lines of widthv in ad x d
passing through the central pixel thefO) = 3 and taking the peer Window we selected = 6 for a3 x 3 window (using 5 PGA itera-
group number. < 3 preserves the intensity value for the central pixefons)- The results are seen in Fig. 3(b). Note that the interiors of the
under one step of PGA. On the other hand taking- 3 introduces leaf regions are smoothed without loss of boundary definition a}nd the
some blurring to the central pixel. For this example, taking 3 only stems are pre_serve_d. However'where the stems neck-dqwn to lines that
guarantees invariance for the central pixel for one PGA step since #Hg Just one pixel wide, PGA with = 6 produces a break in the stem.
other pixels on the object may suffer from a window occlusion effedtiS indicates the need for an adaptive scheme to select the peer group
and thus change their value. For example if the line terminates at sopiee &t each pixel (see Section IV). For this image we restricted the
point then in & x 3 window with the end of the line at the window’s PE€r group size to lie between 3 pixels (since this preserves lines of
center, the line has only 2 pixels in the window. In this cased@) ©N€ Pixel width in & x 3 window) and 8 (for smoothing the interior
has shifted to 2 and we would neeck 2 to preserve the central pixel 18f regions); as can be seen the stems now have no breaks.
intensity. L
If we consider the effect of peer group size relative to the windofy: PGA and Shock Filtering
diameter we see that for the smallest window size 1 the peergroup  In its simplest form for signals, shock filtering uses the orig-
is just the central pixel and thus the average over the peer group pgral signal ¢ as initial data for a nonlinear convection equation:
duces no change. The largest peer group sizessd” in which case wu; = —sgn(u.,)u, With u(z, 0) = g(z). In this formulation we

—2? /202
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Fig. 1. PGA parameter choice effects for a noisy step function. The window size-i8n — 1 (see text for details) whene is the peer group size. (a) Original
signal with two steps, (b) signal with additive Gaussian noise (zero mean and standard deviation three), (c) PGA resuit Willd) PGA result forn = 11,
and (e)—(f) the results with automatic parameter selection for window gized 1 andd = 21, respectively.

5 15 Consider a simple Euler update scheme for the shock filter equation:
} , , let 1 be the time step and set'““ = u; + hu¢. If v is monotone
/ increasing at andu... < 0 in the sense that;+ — 2u; + u;—; <0
05 , 05 then the choicé = 1/2 leads tou;“" = (u; + u;+1)/2. This is the
J - same result we would get with PGA for a peer group of size 2
0 a— 0 because the convexity conditiony 1 — 2u; +u,;,—1 < 0 isthe same as
|wiy1 — u;| < Ju; — wi—1| whenu is monotone increasing. Similarly,
T T 6 0w 50 = 0 % a0 if uer > 0 the choiceh = 1/2 in the shock filter Euler update leads
. @ s ® to the same result as the PGA updat;™"’ = (u;— + u;)/2.

This intersection of shock filtering and PGA for particular param-
. 1 eter choices means that results for one method apply immediately to
the other. For example, PGA with = 2 for signals is total varia-
05 / 05 tion preserving because the same is true for shock filtering. However,

. ﬂ the two methods are not the same for other choices of parameters. In
0 0 . . . . .

particular PGA with larger peer group sizes automatically incorporates

smoothing over the peer group and is able to handle problems such as
2 4 the isolated intensity spikes of salt and pepper noise.

~0.5 -0.5
—-40 -20 0 20 40 -40 -20
(c)

)
(d)

Fig. 2. Comparing PGA with median filtering. (a) Gaussian hump wits

10, (b) PGA result with. = 2 andd = 3. The break points occur at= +o. IV. AUTOMATIC PARAMETER SELECTION
In contrast, the break points for median filtering are detwermined entirely by . . . . L
the window sizel, as shown in (c) forl = 11, and (d) ford = 51. Although the preceding observations make it possible to predict in a

general way how the peer group size affects the smoothing under PGA,

it is still the case that in most images we want to vary the peer group
must be careful to form derivative approximations from the approprias&ze from point to point in order to enhance some features and smooth
direction. Thus if intensity information is to move from right to left,others. For example, if we use8a 3 window then a peer group of size
then we want.,. to represent the right hand derivative and we use @Gpreserves straight edges but not corners. If we lower the peer group
forward difference to approximate,. Similarly we use a backward number to size 4, then corners are also preserved but we do not achieve
difference if we want intensity information to move from left to right.the smoothing that we see with= 6.
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. = as shown in Fig. 4(c). To remedy this we use PGA with the Fisher
r'F oy e - discriminant maximized over the peer group size< n < 8 since
| I!_,.: 'l n = 4 preserves corners. The result is seen in Fig. 4(d). The corner is

- { y J now preserved and the noise is well damped. Fig. 5 shows the values
el 1R I I,.. = | " L Nl = of the Fisher discriminant objective function for the corner pixel with
an . A N ] Pl ! the peer group number varying between 2 and 8. The clear maximum

[.'l(;-r o, | 2] ||:'_': F atn = 4 indicates the presence of a corner.

L1 1= ' o
: | 1za b :"
1,; ' | S [ i i V. COLOR IMAGE PROCESSING

T8, % | R 178 The definition of peer group can be easily generalized for color im-

4 w4 o - = ages and multi-spectral images. For color pixels, 3-D color vectors are

at: (4 it used instead of the intensity values in gray-scale images. Color sim-

A ilarity between two color vectors can be measured by their Euclidean

distance. Color similarity is used to determine the peer group. We adapt

. r A the PGA method presented above to color images with two slight mod-
y ifications: first, the differences in the distance&sare used to identify

(" % ] } potentialnoisypixels. These noisy pixels are not used in estimating the

[} .-‘ |
K

peer group size. Second, instead of the simple average of the peer group
gL . | members, we use a weighted average where the weights decrease ex-
e 'I;'-_' . _ﬂ::‘j | ponentially as the distance of the peer group member increases from
| . ,.nv | the center pixel. This is modeled using a standard Gaussian (variance
i =1).
& The presence of impulse noise may affect the PGA performance on
y T h | color images. To address this, we first calculate the differences of the
] L] distances!; before the peer group classification using the Fisher dis-
i : = @l criminant method. Lef; = d;+1 — d;. The first and last fewl values
T o in this ordered sequence are tested to s¢ef «, wherex is set to a
high value for images with a low signal-to-noise ratio. Those pixels
Fig. 3. PGA parameter choice effects for a Brodatz lace image. (a) Originilat fail the test are not used in the Fisher discriminant method for
image, (b) PGA smoothing with = 6, and (c) PGA smoothing with adaptive qaptively finding the peer group members. In the experiments we use
parameter selection preserves the edges better. M = d/2 whered x d is the size of the window used.
If the purpose is to remove impulse noise and not to smooth the
To get around this problem, in [4] we introduced the idea of usinighage, the center pixel in the window is first checked to see if it is a
the Fisher discriminant to select the peer group for each pixel. Thadssible noisy pixel. Only the noisy pixels are replaced. The peer group
is for a particular pixel ley:, g2, - - - g be the intensity values over in this special case has only one member which is the vector median [2]
the window withg.. the intensity of the central pixel. Form the intensityof the local window. This approach is similar to the SDROM method
differencesl; = |¢; — g.|. Use the Fisher discriminant to separate theggroposed in [1].
differences into two groups. That is, maximize the objective functional Example 5: To test the effectiveness of PGA for impulse noise re-
moval (no smoothing), the pixels of “baboon” and “pepper” images are
corrupted by randomly generated impulse noise. Different percentages
v+ v of the total number of pixels are corrupted. The PGA method com-
over the peer group, where pared with the Vector Median Filter (VMF) [2] and the Teager-operator
method (TEA) [3]. The window size useddsx 3 and the color space
k " is RGB for all the methods. The parameter for the PGA and the TEA
“ = Z difk, @2 = Z dif(m —k+1) is tuned to obtain the best results for each case. The results are tabu-
=t P lated in Tables | and II. The “none” column indicates the SNR without
(di — a‘l)zq o — i (di - az)g‘ any noise removal. In both the.case.s, the PGA method performs better
- ’ - et than the_ other two methods. Fig. 6 illustrates the effects_of peer group
processing compared to other methods for removal of impulse noise
Fig. 1(e) and (f) show the results of PGA using automatic pararim color images. Shown in (a) is a small area in the “baboon” image,
eter selection for two choices of the window sikzdt is observed that and (b) shows the same area after corruption. Fig. 6(c) shows the re-
automatic parameter selection is not sensitive to the specific choicesaft using the VMF, (d) shows the result using the TEA method, and
window size within reasonable limits (see example 1). Fig. 3(c) shoys) shows the result of peer group processing. It can be seen that VMF
the result of using the Fisher discriminant on the lace picture from themoves the noise but also changes the color of other pixels while TEA
Brodatz album. Notice the improvement over Fig. 3(b) in preservirfgils to replace the noise with a similar color to the original one. PGA

_ Jar —asf?

F(k)

k
v =

%

the image details. gives the best approximation to the original image.
A complexity analysis of the PGA (including the automatic param- Example 6: Fig. 7 illustrates the use of PGA for color image
eter selection) is given in Appendix B. smoothing. A part of the “baboon” image is shown in Fig. 7(a). The

Example 4: Fig. 4(a) shows a noisy step function. Using PGA with aesult of PGA is shown in (b) and the result of Gaussian filtering is
3 x 3 window and peer group size= 6 provides excellent smoothing shown in (c) for comparison. Window sizefis< 5. It can be seen that
but degrades the corner of the step [Fig. 4(b)]. A smaller peer grotige peer group processing approach smoothes the color image without
sizen = 3 preserves the corner but is not as good in its smoothinplurring the details compared to Gaussian filtering.
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Fig. 4. Noisy step example. (a) Noisy step, (b) PGA result wite 6 blurs the corner, (c) PGA with = 3 preserves the corner but the smoothing is not good,
and (d) the adaptive PGA method preserves the corner as well as smooths the noisy step.

TABLE I
SNR (dB)FOR “PEPPER | MAGE

Noise None VMF TEA PGF
1% 234 309 389 41.2
5% 16.3 28.8 31.8 34.6
10% 133 270 28.0 312
20% 103 247 242 274

VI. MuLTISCALE PGA

One problem with PGA is the limitation to small windows for com-
putational speed. In particular it would be nice to be able to obtain
uniform smoothing over large regions without having to use large win-
dows and peer groups. To achieve this we have developed a multilevel
PGA procedure similar in spirit to multi-grid methods for solving large
systems of linear equations. We work on several levels by defining win-

Fig. 5. Fisher discriminant values for peer group sizes between two and eigléws with skips between pixels. At the first level is the usual window
for the example shown in Fig. 4. Note that the maximum &t 4 corresponds  with a distance of 1 between pixels; the next level has a distance of 2

to the presence of the corner.

TABLE |
SNR (IN DECIBELS) FOR “BABOON" | MAGE

Noise None
1% 241
5% 17.0
10% 140
20% 11.0

VMF

18.1
17.9
17.6
17.1

TEA
30.2
24.4
21.8
18.7

PGF
32.5
26.4
23.6
20.6

between pixels etc. L&V, be the window ati, j) with a skip ofk be-
tween pixels. For example fordax 3 window, W, = {(i — k, j — k),
(i, §) (i Fs 4R, (G = k), Gy ), (1 G+ R), Gk, G — R,
(i + ko ), (i by j + )

Define the PGA iteration at levél as the usual PGA iteration where
the peer group is selected from the windbi, rather thariV;. Thus
the only difference in the PGA iteration at different levels is the window
from which we select the peer group; as a consequence the computa-
tional effort of doing one PGA iteration at levklis the same as the
effort of doing one iteration at levél = 1. This is the procedure that
we use in the example below; as an alternative one can obtain additional
speed by only doing the PGA iteration at leveat everykth pixel in



332 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 2, FEBRUARY 2001

(a) (k) (c) (d) G

Fig. 6. (a) Small area of the original “baboon” image, (b) same area of the corrupted image, (c) result of the vector median filtering, (d) resrtadérasny
method, and (e) result of peer group processing.

Fig. 7. (a) Part of the original “baboon” image, (b) result of PGA, and (c) result of Gaussian filtering.

i andy; this would reduce the computational cost by a factot 6§ Example 7: Fig. 8(a) shows a satellite image of an agricultural area.
at thekth level while producing nearly the same smoothing effect ovén Fig. 8(b) we see the result of regular PGA witt8 a< 3 window
large distances when iterating over several levels. and peer group. = 6. Fig. 8(c) shows the result of using multilevel

Alternating the PGA iteration between levels results in speeding tR&A with 3 x 3 windows and peer group size = 6 with m = 4.
passage of intensity information within regions. As a side note we oNeote the enhanced smoothing within regions and the elimination of
serve that there is a simple way to implement the PGA interactionthe small sensor artifacts which show up as a series of white blobs
level & without modifying the original PGA program. For example, taunning down the center of the original image. Since these blobs are
do a PGA iteration with a distance of 2 between pixels in each windomther small < 2™ they are attenuated by the averaging process under
one simply has to subsample the image skipping every other pixel aubsampling. This suggests that multilevel PGA could be used in an
then run regular PGA on the subsampled image. Subsampling this vedoject detection top-hat procedure.
transforms a large image into four smaller images denoted hyy: 2,
g21 andgq2 depending on whether the first pixel in the subsample is
(1,1), (1,2), (2,1) or (2, 2). After doing one PGA iteration on each of
the smaller images they are then recombined into a larger image. Sim- VIl. CONCLUSIONS
ilarly for level k we can brealg into k% smaller images, run PGA on
each of the smaller images and then recombine these smaller images peer group image processing method has been presented that
into one larger image. has several natural advantages over competing methods. Automatic

There are a variety of ways to implement a multilevel PGA schemiecal parameter selection allows the adaptive form of PGA to preserve
In our experiments we used the following procedure: do one PGA &dges and corners while obtaining significant smoothing over uniform
eration at level 1, then one iteration each at le2els, ---, 2. This regions in the image. The computational effort of adaptive PGA
is referred to as a PGA cycle through le2€l. Repeat starting at level is many times less than that of PDE based procedures (such as
1. The selection of the final lev&l™ is determined by the amount of variational methods) that achieve similar results. PGA also has the
overall smoothing that we want. Extended objects in the image are paglvantage of ease of implementation and extension to multilevel and
served and smaller objects are eliminated. The extent to which this weetor applications. The simplicity of the underlying idea allows
curs can be partially analyzed by noting that an obfeaif radiusr  analytic results to be obtained concerning the convergence of the
will necessarily change in intensity (in the generic case) when doiR§SA iteration, relations to other methods such as shock filtering
PGA at levelt > r because the peer group for any pixeldnwill and median filtering, and how the choice of parameters affects the
include pixels outsidé). resulting approximation. The parameters of the PGA method are

In practice we found that this multilevel PGA method convergedirectly related to the characteristics of the image features that are to
rather quickly and that little additional change occurred after three b@ enhanced. This is in contrast to most image enhancement methods
five cycles form = 4. More details and applications can be found irin which it is unclear how to select the method parameters or weights
[5] and [9]. to achieve a desired result.
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of dimensionD;. For example for color PGAr = 3. The computa-
tional cost per difference is then equal to the intensity dimensipn

The number of differences that must be computed per window is equal
to the number of pixels in the window. Let; denote the number of
pixels in the window of size. The total cost for computing the differ-
ences over the window is given I8y, s = Dng.

The next step is to find the smallest differences from the set of
ng differences. This gives us the peer group for pixeThis sorting
operation can be accomplisheddh,,,, = nn, comparisons. Finally
we average over the intensities in the peer group to get the PGA
replacement value for pixél For intensities of dimensioP; this has
a cost ofCoperage = nDy.

Thus, the total computational caSt.:.: per pixel per PGA iteration
for peer groups of size, windows of sizef, and intensities of dimen-
sionD; i Crotar = Caigs + Csort + Caverage. If we count additions
] the same as comparisons we obt&i:o; = Ding + nng + nDj.
Thus, for gray scale images we haVg,.; = (n + 1)d* + » and for
color images (three-color spad€),:.; = (3 + n)d* + 3n.

L ol - -
UileD WD Oaell S50 il TEH1 =00 M a0
Tl i

A. Operation Counts for Adaptive PGA

PGA based on the Fisher discriminant can be analyzed in a similar
way. We first compute the differencéds; = |g(i) — g(7)| as in regular
PGA. Again the costis the sam&y; r = D;nq. Next, we will need to
assess the value of the Fisher discriminant over the desired range of peer
groups. For simplicity we assume that we will consider all possible peer
group sizes intherangd < n < ng where as above, is the number
of pixels in the window of siz€. This requires that the differences be
sorted from smallest to largest. bt < r, < -+ < r,, be the sorted
differences. The cost of this is given B .. = O(nalogna).

For a given peer group size the Fisher discriminant value is

_ |A4i(n) — As(n)]
F(n) = Vi(n) + Va(n)

whereA, (n) andVi (n) are respectively the average and variance over

Fig. 8. Comparing (a) the original image, (b) after PGA, and (c) after, ... ;. - As(n) andVz(n) are respectively the average and vari-
multilevel PGA. ance overr, .1, ---, .. However we can exploit update formulas
for the averages and variances:ashanges ta + 1 to avoid computa-
APPENDIX A tional redundancy. In thig case we find that the total cost of computing
PROOF OFLEMMA 1 F(1), F(2), -+, Fna) is
Fori < k, the convexity assumption can be writtengas: — g; > Crisher = 11n4.

gi = gi—1. Sinceg is monotonically increasing, both sides of this in- - gjecting the peer group number with the maximal Fisher value re-
equality are nonnegative. Consequently, the/fer &, the valuey; is  g,ires anothen.,, comparisons. The average for this group has already

closer tog;—i than togi+1. This means that fa2 < i < k, the peer poen cajcylated so we find the total cost per pixel of one adaptive PGA
group for pixeli consists of pixel$ — 1 and:; i.e., we are averaging to jtaration iSChotar = Claifr + Crort + Crisher + na

the left. Fori = 1, the peer group consists of pixels 1 and 2. It is easy
to show that both the monotonicity and convexity of the function are Cliotal = Ding + O(nglogng) + 12n4.

preserved and the peer groups remained fixed. In particular, the peer

group for pixels 1 and 2 are the same. Thus, the intensity values for

these pixels converge in one step to their average and then remain con- ACKNOWLEDGMENT

stant. Since the pixels < i < k are left averaging, they converge to  C. Kenney would like to thank Prof. S. Osher for pointing out
the common value of pixels 1 and 2;i.e.(ta + g2)/2. Similar argu-  the connection between PGA and shock filtering. The authors also
ments show that the function values of pixéls< i < n converge to thank the reviewers for their constructive criticisms and Prof. S.
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