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highly-correlated predictive models,predictive decorrelators do
not guarantee compression.

2) H inf 4
r (n; �) curves for different values ofn and� > 0:5 con-

verge to the straight lineH inf 4
r (n; �) = 2(1� �) (Fig. 4). It is

interesting to observe that asn increases, the highest (best-case)
value ofH inf

r (n; 0) also decreases toward 1. Fig. 4 suggests for
largen

H inf
r (n; �) �

1 0 � 0:5,
2(1� �) 0:5 � 1

with only a 5% numerical error forn > 128 in the0 � 0:5
interval, and an exact numerical match for� > 0:5. From here,
as� > 0:5

Csup(n; �) Csup 4(n; �) =
1

H inf 4
r (n; �)

=
1

2(1� �)
1: (9)

This implies that, first, for largen and� > 0:5, predictive
models are guaranteed to not increase the entropy for any
inter-image correlation. Second, an elegant numerical result
follows for the best-case predictive compression ratio. Since
Csup(n; �0) = C0 gives the lowest� = �0 such that predictive
modelsû, �0—correlated to some imagesu in (1), can deliver
C0 effective compression (see Proposition 1), solving (9) for�
yields the following.

Proposition 3: Effective compression ratioC = C0 (2) cannot be
achieved with (1) when model-to-image correlation

�(u; û) < 1�
1

2C0

:

This holds true forany number of intensity levelsn. In particular,
any predictive compression is impossible for�(u; û) < 0:5 (C0 = 1);
2 : 1 compression is impossible for�(u; û) < 0:75 (C0 = 2), and 3 : 1
compression is impossible for�(u; û) < 5=6 (C0 = 3) (compare to
Proposition 1 and Table I).
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Peer Group Image Enhancement

C. Kenney, Y. Deng, B. S. Manjunath, and G. Hewer

Abstract—Peer group image processing identifies a “peer group” for
each pixel and then replaces the pixel intensity with the average over the
peer group. Two parameters provide direct control over which image fea-
tures are selectively enhanced: area (number of pixels in the feature) and
window diameter (window size needed to enclose the feature). A discussion
is given of how these parameters determine which features in the image are
smoothed or preserved. We show that the Fisher discriminant can be used
to automatically adjust the PGA parameters at each point in the image.
This local parameter selection allows smoothing over uniform regions while
preserving features like corners and edges. This adaptive procedure ex-
tends to multilevel and color forms of PGA. Comparisons are made with
a variety of standard filtering techniques and an analysis is given of com-
putational complexity and convergence issues.

Index Terms—Image enhancement, image smoothing, noise removal,
nonlinear filtering.

I. INTRODUCTION

Noise removal and image smoothing are useful pre-processing steps
in many image processing applications. A general objective in these
applications is to suppress noise while preserving the edge information.
Typically, additive Gaussian or impulse noise models are assumed.

Median filtering is a popular choice for impulse noise removal (see
the tutorial paper [24] by Yinet al.which includes an extensive bibli-
ography for this area). Median filtering forms an approximationu of
an imageg by passing a window of sized � d overg and taking the
median intensity of the window at pixel locationi as the value forui.
The motivation for this type of filtering is that the median preserves
edges (intensity discontinuities). Other related work can be found in
[1], [10], [11]. Extensions to color and multidimensional signals in-
clude the vector median filter (VMF) [2], vector directional filtering
(VDF) [22], and the directional distance filtering (DDF) [8]. The DDF
is a combination of VMF and VDF. A common drawback of all these
above methods is that they are typically implemented uniformly across
the image and tend to modify pixels that are not corrupted by noise.
In [3] a Teager-like operator is used to first detect the outliers so that
only the noisy pixels are replaced. The detection is performed in each
individual color component which may lead to errors in the overall
color. For the case of mixed Gaussian and impulse noise, an adaptive
nonlinear multivariate filtering method is proposed in [21]. It uses the
mean value within a local neighborhood of pixels to estimate the orig-
inal pixel value and hence may blur the edges and the details.

Other approaches to smoothing while preserving boundaries include
variational methods and shock filtering. A standard variational ap-
proach [12, p. 24], [13], [14], [7] to segmenting and approximating an
imageg consists of finding an approximationu and a boundary setK
that minimizes an objective functional that has two components, one
corresponding to the error between the approximation and the original,
and the other related to the length of the boundary. Functionals of
this type are often referred to as the Mumford–Shah functionals.
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The weights associated with the two components play a significant
role in the resulting enhancement quality, and an often encountered
problem is the selection of these weights. It is not clear how to select
good values for the weights associated with the smoothness and
approximation terms.

In shock filtering [17]–[19], intensity values from the interior of
regions move outward toward the region edges along gradient lines.
The convexity of the intensity along the gradient direction determines
the motion direction along the gradient and this direction assignment
means that when two regions meet at an edge, the image intensity will
experience a jump. Thus the edges of the image correspond to sta-
tionary shock fronts for this type of image processing. Note that in
shock filtering the maximum values of the image intensity and the min-
imum values move outward from the interior of their regions to meet at
the boundaries. This means that the contrast at the edges is maximized.
This also means that shock filtering preserves the total variation of the
original image. Shock filtering smoothes in the sense that each region
assumes a constant value. However, shock filtering does not remove
isolated noise such as salt-and-pepper noise, as discussed by Osher and
Rudin in [17].

We propose a nonlinear algorithm for image smoothing and impulse
noise removal that addresses the above mentioned drawbacks of the
current methods. The proposed method is based on the idea that each
pixel has a peer group of associated nearby pixels. The peer group is
then used to modify the value of the pixel.

There are many ways to select the peer group for a given pixel. For
example, see the earlier work by Yaroslavsky [23] presenting an ab-
stract formulation of the group idea. In general, peer group members
should share some common values. For a single image, the peer group
may be nearby pixels with similar intensity values. For a sequence of
images used in determining optical flow fields, the peer group can be
nearby pixels (in time and space) with similar intensity values and sim-
ilar velocity values. In another context, texture values may be assigned
to each pixel and the peer group determined by nearness in texture
space. In this paper we will use the following peer group definition.

Definition: For an imageg, the peer groupP (n; d) associated with
a pixeli consists of then pixels in ad�dwindow centered ati that are
nearest in intensity tog(i). Peer group averaging (PGA) is the process
of replacingg(i) with the average over its peer groupP (n; d).

In the next section we discuss the stability and convergence of the
PGA method. The interplay between the window size (the parameter
d in the above definition), peer group size, and the characteristics of
the image objects is discussed in Section III. This is followed by a pro-
cedure for automatically selecting the peer group size using the Fisher
discriminant in Section IV. In Section V we extend the PGA to color
images. Section VI presents a multilevel approach to PGA. We con-
clude in Section VII with discussions.

II. CONVERGENCE OFPGA

PGA is stable in the sense that the new pixel value ati must lie be-
tween the maximum and minimum intensities in the window of size
d � d centered ati. In practice we find that PGA converges quickly
and that after two or three iterations little additional change occurs. Al-
though the nonlinear aspects of PGA make a general convergence anal-
ysis difficult, we establish convergence for a modified form of PGA in
which the peer group membership is fixed after the first few iterations.

A. One-Dimensional Monotone Signals

We begin by considering the behavior of the PGA scheme on mono-
tone signals. The analysis shows that PGA for peer groups of size two
and windows of size three converges to a piecewise function with the
breakpoints at the zeros of the second derivative of the original signal.

This is the 1-D version of the idea that the zeros of the Laplacian serve
as boundary points for images. While the peer group size two is too
small to be of practical value, the primary motivation for the following
analysis is that it establishes a connection between PGA and shock fil-
tering (see Section III-A).

Assume thatg is a monotonically increasing 1-D signal. The peer
group for pixeli is determined by nearness of intensity values togi; in
cases of ambiguity caused by equal intensity differences, we select the
peer group to minimize the distance of the peer group members from
pixel i, with preference to the right if necessary.

Lemma 1: Let g be monotonically increasing over[1; n] with a
change in convexity atk: gi�1 � 2gi + gi+1 > 0 for i � k, and
gi�1 � 2gi + gi+1 < 0 for i > k. Then the PGA algorithm with
peer groups of size 2 and windows of size 3 applied tog converges to
a bimodal piecewise constant functionu. The point whereg changes
convexity (x = k) is also the boundary point for the two constant re-
gions ofu: ui = (g1 + g2)=2 for i � k, andui = (gn�1 + gn)=2 for
i > k.

The proof is outlined in Appendix A. For general signals, ifg is
convex or concave in the intervalI defined byk0 � i � k1 then the
PGA algorithm with peer group size 2 and window size 3 converges
to a constant valuec in the intervalI . Thus the PGA algorithm con-
verges to a piecewise constant function with the regions of constancy
determined by the convexity breakpoints (i.e. those points for which
gi�1 � 2gi + gi+1 changes sign) of the original functiong. This is il-
lustrated in Example 2 which compares PGA and median filtering for
a Gaussian hump.

B. Convergence for Fixed PGA

In the course of testing numerical examples under the PGA algo-
rithm we observed that the peer groups can change significantly during
the first few iterations. This is then followed by a period during which
there is little or no change in the peer group structure. The nonlinearity
of the PGA algorithm is tied solely to the selection of the peer group
members. For ease of analysis we consider a modified version of the
PGA algorithm in which membership in the peer groups is fixed after
a certain number of regular PGA steps. The following gives a conver-
gence result for this “fixed” PGA approach and applies to both 1-D and
2-D signals (images).

Lemma 2: Let the sequenceuk be generated using the PGA algo-
rithm, starting fromu0 = g, with fixed peer groups for each pixel after
iterationk0. Then the sequenceuk converges to a limiting imageu.

Proof: After the peer groups are fixed the PGA iteration can be
written asxk+1 = Axk where the vectorxk is formed by stacking
the columns of the imageuk and the matrixA does the peer group
averaging. (Thus PGA is linear after the peer groups are fixed. This
permits the following analysis.) The entries of the rows ofA sum to 1
and consist of either 0 or1=n, wheren is the peer group number. We
say that a subsetS of pixels isstrongly connectedor irreducible if 1)
i 2 S implies that the peer group fori is also inS, and 2) for anyi and
j in S there is a path inS from i to j and a path FROMj to i. That
is, there are pixelsi1; � � � ; im in S such thatip is in the peer group of
ip+1 for p = 1 to p = m� 1 with i1 = i andim = j, and vice verse.
The image may contain one or more irreducible subsets. For reasons
that will become clear below we refer to these subsets as theprimary
irreducible subsets of the image.

For any irreducible subsetS the iterationxk+1 = Axk becomes
~xk+1 = ~A~xk where~x are the pixel intensities inS and ~A is an ir-
reducible nonnegative matrix with row sums equal to 1. Applying the
Perron–Frobenius Theorem [16], we see that~A has a simple eigenvalue
of largest modulus and all other eigenvalues are of smaller modulus.
(Note that we have used the fact that the main diagonal entries of~A
are positive to establish that the dominant eigenspace has dimension
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one; see [16, Ths. 6.1.4 and 6.1.5 p. 219].) Because the row sums are 1
we have�max( ~A) = 1 with associated eigenvectorv = (1; � � � ; 1)T .
Thus~xm+k = ~Am~xk , which is just the power method [20]. Since
the dominant eigenspace has dimension one, the power method con-
verges and~xk converges to~x = cv wherec is the projection ofxk
ontov; i.e.,c is the average of the entries ofxk .

Now repeat this for each irreducible subset of pixels. From this anal-
ysis we see that the limiting imageu under the PGA algorithm is con-
stant on each primary irreducible region of the image.

The remaining pixel intensities satisfy a recursion of the form
x̂k+1 = Âx̂k + b̂k whereb̂k represents the contribution to the aver-
aging of the irreducible sets of pixels. Again determine the irreducible
subsets of pixels with respect tôA. These subsets are thesecondary
irreducible subsets of the image. The PGA iteration on these subsets
has the formxk+1 = Axk + bk whereA is irreducible with positive
main diagonal entries equal to1=n wheren is the peer group number.
Since at least one row ofA sums to less than 1 (this is true of any
row with a nonzero entry inbk) the spectral radius ofA is less than
1 by the Perron–Frobenius Theorem (see [16, Theorems 6.1.4 and
6.1.5 p. 219]). Letx = (I � A)�1b. Thenxk+1 � x = A(xk � x).
Since�(A) < 1 the differencexk � x must converge to zero, i.e.,xk
converges tox.

Thus the limiting imageu on the secondary irreducible subsets of the
image is determined by the constant values on the primary irreducible
subsets. Repeating this process for tertiary and higher irreducible sets
accounts for all the pixels and completes the proof.

III. PROPERTIES OFPGA AND PARAMETER SELECTION

For PGA there are two parameters: window sized�d and peer group
numbern. We can make some general points about selecting the peer
group size by considering a particular example. First suppose that in
a window of sized, the central pixel is part of group ofN pixels of
the same intensity. Let us refer to this group of pixels asO (for ob-
ject) and definen(O) = N as the number of pixels inO. For example
O might be a line or corner or even a disconnected group of pixels in
the window. If the rest of the pixels in the window have intensities that
differ from the common intensity inO then the result of peer group
averaging depends critically on whether the peer group numbern is
greater thann(O) or not. Ifn � n(O) then the peer group for the cen-
tral pixel will consist of pixels inO and the average over the peer group
is equal to the common intensity value overO. However ifn > n(O)
then the peer group must include some pixels outside ofO. Potentially
the average might still equal the common value overO if high and low
values cancel but in the generic case the average over the peer group
will differ from the common value overO. Thus a necessary condition
for preserving the intensity of the central pixel isn � n(O).

To illustrate, in a3� 3 window, if O is a straight line of width one
passing through the central pixel thenn(O) = 3 and taking the peer
group numbern � 3 preserves the intensity value for the central pixel
under one step of PGA. On the other hand takingn > 3 introduces
some blurring to the central pixel. For this example, takingn � 3 only
guarantees invariance for the central pixel for one PGA step since the
other pixels on the object may suffer from a window occlusion effect
and thus change their value. For example if the line terminates at some
point then in a3� 3 window with the end of the line at the window’s
center, the line has only 2 pixels in the window. In this case then(O)
has shifted to 2 and we would needn � 2 to preserve the central pixel
intensity.

If we consider the effect of peer group size relative to the window
diameter we see that for the smallest window sizen = 1 the peer group
is just the central pixel and thus the average over the peer group pro-
duces no change. The largest peer group size isn = d2 in which case

the entire window is the peer group. Averaging over the entire window
blurs the image. Informally we can say then that as the peer group size
increases so does the smoothing effect under PGA. This leads us to the
rule of thumb: to obtain maximal smoothing while preserving an object
of sizen(O) use a peer group of sizen = n(O). For more details, we
refer to [5].

We now consider some examples illustrating the performance of
PGA on 1-D and 2-D signals.

Example 1: This is a signal consisting of two steps of different
heights and widths; see Fig. 1(a). Fig. 1(b) shows the original signal
plusN(0; 3) noise. The result of using PGA on the noisy data with
n = 9 andd = 17 is shown in Fig. 1(c). Since the peer group number
is less than the object number (the intervals are of length 10 and 20
respectively) the steps are preserved. However, when we set the peer
group number ton = 11 which is larger than the shorter of the step
intervals then as expected we lose the small step, as seen in Fig. 1(d).
Here we usedd = 2n� 1 = 21 for the window diameter.

Fig. 1(e) and (f) shows the results of applying adaptive PGA (de-
scribed in Section IV) for windows of sizesd = 11 andd = 21 re-
spectively with the best peer group number selected at each pixel from
the rangenlower = (d + 1)=2 to nupper = d � 1. These choices on
the lower range have the effect of eliminating objects of size less than
nlower and hence whennlower = 6 as in Fig. 1(e) the steps are pre-
served. However whennlower = 11 as in Fig. 1(f) then the steps of
size 10 are lost.

We also note that a similar example has been studied by Oman
[15] using a variety of approximation methods including SobolevH1

reconstruction, total variation approximation, low pass Fourier recon-
struction, and wavelet methods (in which de-noising in the manner
of Donoho and Johnstone [6] was used for Harr and Daubechies
wavelets). The PGA results forn = 3 are superior to (or approxi-
mately the same in the case of the total variation method) the results
reported by Oman. It can be further noted that the PGA results do not
use any estimate of the variance of the noise in the data.

The next example compares median filtering with PGA for a
Gaussian hump.

Example 2: Let g be the Gaussian functiong(x) = e�x =2� .
Fig. 2(a) showsg for � = 10. Fig. 2(b) shows the PGA approxima-
tion u for n = 2 andd = 3. The break points inu occur atx = ��
which are also the zero-crossings of the Laplacian ofg. In contrast the
median filter results do not depend on the variance of the Gaussian; in-
stead the breakpoints are determined entirely by the window diameter
as seen in Fig. 2(c) for a window of sized = 11 and Fig. 2(d) for a
window of sized = 51.

Example 3: Fig. 3(a) shows a lace image from the Brodatz texture
album. This image gives a nice illustration of how to preserve lines
while smoothing interior regions. The thin stems in the image are 2
pixels wide. Usingn = wd to preserve lines of widthw in a d � d
window we selectedn = 6 for a 3 � 3 window (using 5 PGA itera-
tions). The results are seen in Fig. 3(b). Note that the interiors of the
leaf regions are smoothed without loss of boundary definition and the
stems are preserved. However where the stems neck-down to lines that
are just one pixel wide, PGA withn = 6 produces a break in the stem.
This indicates the need for an adaptive scheme to select the peer group
size at each pixel (see Section IV). For this image we restricted the
peer group size to lie between 3 pixels (since this preserves lines of
one pixel width in a3 � 3 window) and 8 (for smoothing the interior
leaf regions); as can be seen the stems now have no breaks.

A. PGA and Shock Filtering

In its simplest form for signals, shock filtering uses the orig-
inal signal g as initial data for a nonlinear convection equation:
ut = �sgn(uxx)ux with u(x; 0) = g(x). In this formulation we
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Fig. 1. PGA parameter choice effects for a noisy step function. The window size isd = 2n� 1 (see text for details) wheren is the peer group size. (a) Original
signal with two steps, (b) signal with additive Gaussian noise (zero mean and standard deviation three), (c) PGA result withn = 9, (d) PGA result forn = 11,
and (e)–(f) the results with automatic parameter selection for window sizesd = 11 andd = 21, respectively.

Fig. 2. Comparing PGA with median filtering. (a) Gaussian hump with� =

10, (b) PGA result withn = 2 andd = 3. The break points occur atx = ��.
In contrast, the break points for median filtering are detwermined entirely by
the window sized, as shown in (c) ford = 11, and (d) ford = 51.

must be careful to form derivative approximations from the appropriate
direction. Thus if intensity information is to move from right to left,
then we wantux to represent the right hand derivative and we use a
forward difference to approximateux. Similarly we use a backward
difference if we want intensity information to move from left to right.

Consider a simple Euler update scheme for the shock filter equation:
let h be the time step and setunewi = ui + hut. If u is monotone
increasing ati anduxx < 0 in the sense thatui+1 � 2ui + ui�1 < 0
then the choiceh = 1=2 leads tounewi = (ui + ui+1)=2. This is the
same result we would get with PGA for a peer group of sizen = 2
because the convexity conditionui+1�2ui+ui�1 < 0 is the same as
jui+1 � uij < jui � ui�1j whenu is monotone increasing. Similarly,
if uxx > 0 the choiceh = 1=2 in the shock filter Euler update leads
to the same result as the PGA update:unewi = (ui�1 + ui)=2.

This intersection of shock filtering and PGA for particular param-
eter choices means that results for one method apply immediately to
the other. For example, PGA withn = 2 for signals is total varia-
tion preserving because the same is true for shock filtering. However,
the two methods are not the same for other choices of parameters. In
particular PGA with larger peer group sizes automatically incorporates
smoothing over the peer group and is able to handle problems such as
the isolated intensity spikes of salt and pepper noise.

IV. A UTOMATIC PARAMETER SELECTION

Although the preceding observations make it possible to predict in a
general way how the peer group size affects the smoothing under PGA,
it is still the case that in most images we want to vary the peer group
size from point to point in order to enhance some features and smooth
others. For example, if we use a3�3 window then a peer group of size
6 preserves straight edges but not corners. If we lower the peer group
number to size 4, then corners are also preserved but we do not achieve
the smoothing that we see withn = 6.
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Fig. 3. PGA parameter choice effects for a Brodatz lace image. (a) Original
image, (b) PGA smoothing withn = 6, and (c) PGA smoothing with adaptive
parameter selection preserves the edges better.

To get around this problem, in [4] we introduced the idea of using
the Fisher discriminant to select the peer group for each pixel. That
is for a particular pixel letg1; g2; � � � gm be the intensity values over
the window withgc the intensity of the central pixel. Form the intensity
differencesdi = jgi�gcj. Use the Fisher discriminant to separate these
differences into two groups. That is, maximize the objective functional

F (k) =
ja1 � a2j

2

v1 + v2

over the peer groupk, where

a1 =

k

i=1

di=k; a2 =

m

i=k+1

di=(m� k + 1)

v1 =

k

i=1

(di � a1)
2; v2 =

m

i=k+1

(di � a2)
2:

Fig. 1(e) and (f) show the results of PGA using automatic param-
eter selection for two choices of the window sized. It is observed that
automatic parameter selection is not sensitive to the specific choice of
window size within reasonable limits (see example 1). Fig. 3(c) shows
the result of using the Fisher discriminant on the lace picture from the
Brodatz album. Notice the improvement over Fig. 3(b) in preserving
the image details.

A complexity analysis of the PGA (including the automatic param-
eter selection) is given in Appendix B.

Example 4: Fig. 4(a) shows a noisy step function. Using PGA with a
3�3 window and peer group sizen = 6 provides excellent smoothing
but degrades the corner of the step [Fig. 4(b)]. A smaller peer group
sizen = 3 preserves the corner but is not as good in its smoothing,

as shown in Fig. 4(c). To remedy this we use PGA with the Fisher
discriminant maximized over the peer group size4 � n � 8 since
n = 4 preserves corners. The result is seen in Fig. 4(d). The corner is
now preserved and the noise is well damped. Fig. 5 shows the values
of the Fisher discriminant objective function for the corner pixel with
the peer group number varying between 2 and 8. The clear maximum
atn = 4 indicates the presence of a corner.

V. COLOR IMAGE PROCESSING

The definition of peer group can be easily generalized for color im-
ages and multi-spectral images. For color pixels, 3-D color vectors are
used instead of the intensity values in gray-scale images. Color sim-
ilarity between two color vectors can be measured by their Euclidean
distance. Color similarity is used to determine the peer group. We adapt
the PGA method presented above to color images with two slight mod-
ifications: first, the differences in the distancesdi are used to identify
potentialnoisypixels. These noisy pixels are not used in estimating the
peer group size. Second, instead of the simple average of the peer group
members, we use a weighted average where the weights decrease ex-
ponentially as the distance of the peer group member increases from
the center pixel. This is modeled using a standard Gaussian (variance
= 1).

The presence of impulse noise may affect the PGA performance on
color images. To address this, we first calculate the differences of the
distancesdi before the peer group classification using the Fisher dis-
criminant method. Letfi = di+1�di. The first and last fewM values
in this ordered sequence are tested to see iffi � �, where� is set to a
high value for images with a low signal-to-noise ratio. Those pixels
that fail the test are not used in the Fisher discriminant method for
adaptively finding the peer group members. In the experiments we use
M = d=2 whered� d is the size of the window used.

If the purpose is to remove impulse noise and not to smooth the
image, the center pixel in the window is first checked to see if it is a
possible noisy pixel. Only the noisy pixels are replaced. The peer group
in this special case has only one member which is the vector median [2]
of the local window. This approach is similar to the SDROM method
proposed in [1].

Example 5: To test the effectiveness of PGA for impulse noise re-
moval (no smoothing), the pixels of “baboon” and “pepper” images are
corrupted by randomly generated impulse noise. Different percentages
of the total number of pixels are corrupted. The PGA method com-
pared with the Vector Median Filter (VMF) [2] and the Teager-operator
method (TEA) [3]. The window size used is3� 3 and the color space
is RGB for all the methods. The� parameter for the PGA and the TEA
is tuned to obtain the best results for each case. The results are tabu-
lated in Tables I and II. The “none” column indicates the SNR without
any noise removal. In both the cases, the PGA method performs better
than the other two methods. Fig. 6 illustrates the effects of peer group
processing compared to other methods for removal of impulse noise
in color images. Shown in (a) is a small area in the “baboon” image,
and (b) shows the same area after corruption. Fig. 6(c) shows the re-
sult using the VMF, (d) shows the result using the TEA method, and
(e) shows the result of peer group processing. It can be seen that VMF
removes the noise but also changes the color of other pixels while TEA
fails to replace the noise with a similar color to the original one. PGA
gives the best approximation to the original image.

Example 6: Fig. 7 illustrates the use of PGA for color image
smoothing. A part of the “baboon” image is shown in Fig. 7(a). The
result of PGA is shown in (b) and the result of Gaussian filtering is
shown in (c) for comparison. Window size is5� 5. It can be seen that
the peer group processing approach smoothes the color image without
blurring the details compared to Gaussian filtering.
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Fig. 4. Noisy step example. (a) Noisy step, (b) PGA result withn = 6 blurs the corner, (c) PGA withn = 3 preserves the corner but the smoothing is not good,
and (d) the adaptive PGA method preserves the corner as well as smooths the noisy step.

Fig. 5. Fisher discriminant values for peer group sizes between two and eight
for the example shown in Fig. 4. Note that the maximum atn = 4 corresponds
to the presence of the corner.

TABLE I
SNR (IN DECIBELS) FOR “BABOON” I MAGE

TABLE II
SNR (dB)FOR “PEPPER” I MAGE

VI. M ULTISCALE PGA

One problem with PGA is the limitation to small windows for com-
putational speed. In particular it would be nice to be able to obtain
uniform smoothing over large regions without having to use large win-
dows and peer groups. To achieve this we have developed a multilevel
PGA procedure similar in spirit to multi-grid methods for solving large
systems of linear equations. We work on several levels by defining win-
dows with skips between pixels. At the first level is the usual window
with a distance of 1 between pixels; the next level has a distance of 2
between pixels etc. LetWk be the window at(i; j)with a skip ofk be-
tween pixels. For example for a3� 3 window,Wk = f(i� k; j� k),
(i�k; j), (i�k; j+k), (i; j�k), (i; j), (i; j+k), (i+k; j�k),
(i + k; j), (i + k; j + k)g.

Define the PGA iteration at levelk as the usual PGA iteration where
the peer group is selected from the windowWk rather thanW1. Thus
the only difference in the PGA iteration at different levels is the window
from which we select the peer group; as a consequence the computa-
tional effort of doing one PGA iteration at levelk is the same as the
effort of doing one iteration at levelk = 1. This is the procedure that
we use in the example below; as an alternative one can obtain additional
speed by only doing the PGA iteration at levelk at everykth pixel in
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Fig. 6. (a) Small area of the original “baboon” image, (b) same area of the corrupted image, (c) result of the vector median filtering, (d) result of Teager-operator
method, and (e) result of peer group processing.

Fig. 7. (a) Part of the original “baboon” image, (b) result of PGA, and (c) result of Gaussian filtering.

i andj; this would reduce the computational cost by a factor of1=k2

at thekth level while producing nearly the same smoothing effect over
large distances when iterating over several levels.

Alternating the PGA iteration between levels results in speeding the
passage of intensity information within regions. As a side note we ob-
serve that there is a simple way to implement the PGA interaction at
levelk without modifying the original PGA program. For example, to
do a PGA iteration with a distance of 2 between pixels in each window,
one simply has to subsample the image skipping every other pixel and
then run regular PGA on the subsampled image. Subsampling this way
transforms a large image into four smaller images denoted byg11, g12,
g21 andg22 depending on whether the first pixel in the subsample is
(1, 1), (1, 2), (2, 1) or (2, 2). After doing one PGA iteration on each of
the smaller images they are then recombined into a larger image. Sim-
ilarly for level k we can breakg into k2 smaller images, run PGA on
each of the smaller images and then recombine these smaller images
into one larger image.

There are a variety of ways to implement a multilevel PGA scheme.
In our experiments we used the following procedure: do one PGA it-
eration at level 1, then one iteration each at levels2; 4; � � � ; 2m. This
is referred to as a PGA cycle through level2

m. Repeat starting at level
1. The selection of the final level2m is determined by the amount of
overall smoothing that we want. Extended objects in the image are pre-
served and smaller objects are eliminated. The extent to which this oc-
curs can be partially analyzed by noting that an objectO of radiusr
will necessarily change in intensity (in the generic case) when doing
PGA at levelk > r because the peer group for any pixel inO will
include pixels outsideO.

In practice we found that this multilevel PGA method converged
rather quickly and that little additional change occurred after three to
five cycles form = 4. More details and applications can be found in
[5] and [9].

Example 7: Fig. 8(a) shows a satellite image of an agricultural area.
In Fig. 8(b) we see the result of regular PGA with a3 � 3 window
and peer groupn = 6. Fig. 8(c) shows the result of using multilevel
PGA with 3 � 3 windows and peer group sizen = 6 with m = 4.
Note the enhanced smoothing within regions and the elimination of
the small sensor artifacts which show up as a series of white blobs
running down the center of the original image. Since these blobs are
rather smallr < 2

m they are attenuated by the averaging process under
subsampling. This suggests that multilevel PGA could be used in an
object detection top-hat procedure.

VII. CONCLUSIONS

A peer group image processing method has been presented that
has several natural advantages over competing methods. Automatic
local parameter selection allows the adaptive form of PGA to preserve
edges and corners while obtaining significant smoothing over uniform
regions in the image. The computational effort of adaptive PGA
is many times less than that of PDE based procedures (such as
variational methods) that achieve similar results. PGA also has the
advantage of ease of implementation and extension to multilevel and
vector applications. The simplicity of the underlying idea allows
analytic results to be obtained concerning the convergence of the
PGA iteration, relations to other methods such as shock filtering
and median filtering, and how the choice of parameters affects the
resulting approximation. The parameters of the PGA method are
directly related to the characteristics of the image features that are to
be enhanced. This is in contrast to most image enhancement methods
in which it is unclear how to select the method parameters or weights
to achieve a desired result.
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Fig. 8. Comparing (a) the original image, (b) after PGA, and (c) after
multilevel PGA.

APPENDIX A
PROOF OFLEMMA 1

For i � k, the convexity assumption can be written asgi+1 � gi >
gi � gi�1. Sinceg is monotonically increasing, both sides of this in-
equality are nonnegative. Consequently, the fori � k, the valuegi is
closer togi�1 than togi+1. This means that for2 � i � k, the peer
group for pixeli consists of pixelsi� 1 andi; i.e., we are averaging to
the left. Fori = 1, the peer group consists of pixels 1 and 2. It is easy
to show that both the monotonicity and convexity of the function are
preserved and the peer groups remained fixed. In particular, the peer
group for pixels 1 and 2 are the same. Thus, the intensity values for
these pixels converge in one step to their average and then remain con-
stant. Since the pixels2 < i � k are left averaging, they converge to
the common value of pixels 1 and 2; i.e. to(g1 + g2)=2. Similar argu-
ments show that the function values of pixelsk < i � n converge to
the common value(gn�1 + gn)=2 which completes the proof.

APPENDIX B
OPERATIONCOUNTS FORPGA AND MULTILEVEL PGA

In order to find the PGA replacement value for pixeli from a window
of sized (note: we used to denote both 1-D and 2-D data. For 2-D sized
implies a window ofd�d pixels centered ati), and a peer group of size
n, we first must form the differencesdij = jg(i)�g(j)j. Here,i andj
index the pixel locations. We assume that the intensity may be a vector

of dimensionDI . For example for color PGA,DI = 3. The computa-
tional cost per difference is then equal to the intensity dimensionDI .
The number of differences that must be computed per window is equal
to the number of pixels in the window. Letnd denote the number of
pixels in the window of sized. The total cost for computing the differ-
ences over the window is given byCdiff = DInd.

The next step is to find then smallest differences from the set of
nd differences. This gives us the peer group for pixeli. This sorting
operation can be accomplished inCsort = nnd comparisons. Finally
we average over then intensities in the peer group to get the PGA
replacement value for pixeli. For intensities of dimensionDI this has
a cost ofCaverage = nDI .

Thus, the total computational costCtotal per pixel per PGA iteration
for peer groups of sizen, windows of sized, and intensities of dimen-
sionDI isCtotal = Cdiff +Csort+Caverage. If we count additions
the same as comparisons we obtainCtotal = DInd + nnd + nDI .
Thus, for gray scale images we haveCtotal = (n+ 1)d2 + n and for
color images (three-color space)Ctotal = (3 + n)d2 + 3n.

A. Operation Counts for Adaptive PGA

PGA based on the Fisher discriminant can be analyzed in a similar
way. We first compute the differencesdij = jg(i)�g(j)j as in regular
PGA. Again the cost is the same,Cdiff = DInd. Next, we will need to
assess the value of the Fisher discriminant over the desired range of peer
groups. For simplicity we assume that we will consider all possible peer
group sizesn in the range1 � n � nd where as abovend is the number
of pixels in the window of sized. This requires that the differences be
sorted from smallest to largest. Letr1 � r2 � � � � � rn be the sorted
differences. The cost of this is given byCsort = O(nd lognd).

For a given peer group sizen, the Fisher discriminant value is

F (n) =
jA1(n)� A2(n)j

V1(n) + V2(n)

whereA1(n) andV1(n) are respectively the average and variance over
r1; � � � ; rn; A2(n) andV2(n) are respectively the average and vari-
ance overrn+1; � � � ; rn . However we can exploit update formulas
for the averages and variances asn changes ton+1 to avoid computa-
tional redundancy. In this case we find that the total cost of computing
F (1); F (2); � � � ; F (nd) is

CFisher = 11nd:

Selecting the peer group number with the maximal Fisher value re-
quires anothernd comparisons. The average for this group has already
been calculated so we find the total cost per pixel of one adaptive PGA
iteration isCtotal = Cdiff + Csort + CFisher + nd

Ctotal = DInd +O(nd lognd) + 12nd:
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