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Abstract—A compact color descriptor and an efficient indexing
method for this descriptor are presented. The target application is
similarity retrieval in large image databases using color. Colors in
a given region are clustered into a small number of representative
colors. The feature descriptor consists of the representative colors
and their percentages in the region. A similarity measure similar
to the quadratic color histogram distance measure is defined for
this descriptor. The representative colors can be indexed in the
three-dimensional (3-D) color space thus avoiding the high-dimen-
sional indexing problems associated with the traditional color his-
togram. For similarity retrieval, each representative color in the
query image or region is used independently to find regions con-
taining that color. The matches from all of the query colors are
then combined to obtain the final retrievals. An efficient indexing
scheme for fast retrieval is presented. Experimental results show
that this compact descriptor is effective and compares favorably
with the traditional color histogram in terms of overall computa-
tional complexity.

Index Terms—Color indexing, dominant color feature, region-
based retrieval.

I. INTRODUCTION

T HE USE of low-level visual features to retrieve relevant
information from image and video databases has drawn

much research attention in recent years. Color is perhaps
the most dominant and distinguishing visual feature. Color
histogram is the most widely used color descriptor in content
based retrieval research. A color histogram captures global
color distribution in an image. While color histograms are easy
to compute, they result in large feature vectors that are difficult
to index and have high search and retrieval cost. In addition,
spatial information is not preserved in a color histogram.
Thus a large red color blob in a green background will have
the same color histogram as an image containing the same
number of randomly distributed red and green pixels. Several
of the recently proposed color descriptors try to incorporate
spatial information to varying degrees. These include the
compact color moments [20], [21], binary color sets [19], color
coherence vector [16], and color correlogram [10].
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The feature vector dimensions of typical color descriptors are
quite large. For example, the number of bins in a typical color
histogram range from few tens to a few hundreds. The high di-
mensionality of the feature vectors result in high computational
cost in distance calculation for similarity retrieval, and ineffi-
ciency in indexing and search.

Several methods have been proposed to overcome these prob-
lems. In [25] the dominant colors in the histogram are used, and
a multiresolution color clustering is suggested in [23] to reduce
the computational complexity in distance calculation. Singular
value decomposition (SVD) [9] and Hilbert curve fitting [4] are
used to reduce the dimensionality of the feature vectors. How-
ever, these methods have their own drawbacks. In [9] SVD is
performed on the quadratic matrix of correlations between the
color histogram bins. The resulting eigenvectors are not related
to the feature data, and may result in significant errors when
lower-dimensional transformed feature vectors are used to ap-
proximate the original feature vectors. The results of Hilbert
curve fitting depend on the data distributions. Points that are
close to each other in the original feature space might be far
apart on the Hilbert curve. The distances in the original space
might not be preserved well in the curve approximation.

The color moments descriptor proposed in [20], [21] has a
compact representation. The moment descriptor includes the av-
erage, variance, and the third-order moment of the colors in the
image. A recent study [14] shows that the color moment de-
scriptor performs slightly worse than a high-dimensional color
histogram. One drawback of the moment descriptor is that the
average of all the colors might be quite different from any of the
original colors. Given a color moment feature description, it is
difficult to recover the actual colors in the image.

The proposed descriptor is also quite compact, and is based
on the observation that a small number of colors is usually suf-
ficient to characterize the color information in an image re-
gion. Since the descriptor captures the representative or dom-
inant colors in a given region, we refer to it as the dominant
color descriptor. The dominant color descriptor consists of the
representative colors and their relative distribution in a given
region. A similarity measure is defined for the proposed color
descriptor and is shown to be equivalent to the popular quadratic
color histogram distance measure. However, the difference be-
tween the new descriptor and the color histogram descriptor is
that the representative colors are computed from each image in-
stead of being fixed in the color space, thus allowing the fea-
ture representation to be accurate as well as compact. Unlike
the compact color moments descriptor, the dominant color rep-
resentation allows simple visualization of the color distributions
in the image.
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Fig. 1. Basic indexing and search scheme.

Fig. 2. The 2-D hexagonal lattice� is the minimum radius of a sphere that can
cover the Voronoi cell,� is the maximum radius of a sphere that the Voronoi
cell can cover.

TABLE I
PRECISION AND RECALL FORK = 50

Fig. 3. Illustration of lattice structure and search mechanism in the 2-D plane.
Point “x” is the query. A hexagonal lattice structure is shown and lattice points
are marked,r andR are the desired and actual search radius, respectively,� is
the minimum radius of a sphere that can cover a Voronoi cell.

TABLE II
EXPERIMENTAL DATA

An efficient color indexing scheme is proposed for fast
search and retrieval using this dominant color descriptor.
The key is to index the representative colors individually in
a three-dimensional (3-D) color space rather than indexing
in the feature space. The idea is similar to the multiple text
keyword search. Each color can be thought of as a keyword
and each entry in the database contains several color keywords.
During the search process, matching entries containing each
color keyword are found and the final results are the join of
these matches. However, since each color has an associated
percentage value that reflects the statistical distribution as well,
the search process is more complicated than a keyword text
search.

A similar approach to color indexing is described in [1] where
the method is applied to databases of trademark and flag images.
The images in such databases consist mostly of homogeneous
regions and can be represented using a small number of colors.
The proposed approach differs from [1] in the following aspects.

• A generalized distance measure to compare two arbitrary
dominant color description is proposed, and is shown to
be equivalent to the quadratic color histogram distance
measure. The actual complexity of computing the distance
is considerably lower in our method.

• A lattice structure is used for indexing. For similarity re-
trieval considered here, only range queries need to be com-
puted. The range corresponds to the maximum distance
between two colors that are considered similar. For fixed
range queries, a tree index structure is not necessary and a
fixed grid type of indexing is quite efficient [18].

• The query and the retrieved feature descriptions are not
required to have the same sets of colors as long as the
majority colors in the two feature descriptions match
each other. In [1], however, each query color must have a
matching color in the retrieval. While for the trademark
and flag image databases in [1] it might be necessary to
find exact color matches, it is not required in general.

The paper is organized as follows. Section II describes the
dominant color descriptor. Section III describes the indexing
and search method. Section IV provides experimental results,
and Section V concludes with discussions.

II. DOMINANT COLOR DESCRIPTOR

The local color feature extraction starts first with color image
segmentation. For image segmentation, we use the edgeflow al-
gorithm [12]. Color clustering is performed on each segmented
region to obtain its representative colors (see Section II-A).

After clustering, only a small number of colors remain and the
percentages of these colors are calculated. Each representative
color and its corresponding percentage form a pair of attributes
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TABLE III
PRECISION AND RECALL FORK = 50

that describe the color characteristics in an image region. The
dominant color descriptor is defined to be

(1)

where is the total number of color clusters in the image re-
gion, is a 3-D color vector, is its percentage, and
. Note that can vary from region to region.

A. Color Clustering

We use the color clustering method proposed in [6]. In this
clustering, the pixel color values are vector quantized using a
modified generalized Lloyd algorithm (GLA). Colors are repre-
sented in the perceptually uniform CIE LUV color space. The
distortion in each cluster is given by

(2)

where is the centroid of cluster is the color vector
at pixel , and is the perceptual weight for pixel. The
perceptual weights are calculated from the local pixel statistics
to account for the fact that human visual perception is more
sensitive to changes in smooth regions than in textured regions

as described in [6]. The update rule for this distortion metric is
derived to be

(3)

An agglomerative clustering [7] is performed on the cluster
centroids to further merge close clusters such that the minimum
distance between two centroids exceeds a preset threshold.
The final quantized image is obtained by assigning each pixel
to its closest cluster centroid.

Since the complexity of this color clustering algorithm is
high, other faster color clustering methods can also be used
to extract the dominant region colors. One possibility is to
compute the traditional color histogram feature first. The
representative colors can then be obtained by merging the color
histogram bins. The disadvantage with this approach is that the
representative colors are not as accurate as the colors extracted
directly from the image pixels.

B. Color Similarity

The colors { } and the corresponding percentage of
pixels form the color descriptor as given by (1). Let



DENG et al.: EFFICIENT COLOR REPRESENTATION FOR IMAGE RETRIEVAL 143

and
be two color feature descriptions. The distance betweenand

is given by

(4)

where is the similarity coefficient between colorsand ,

(5)

where is the Euclidean distance between colorand

(6)

and , as defined earlier, is the maximum distance for two
colors to be considered similar. and is set to
1.2 in the experiments.

The above distance measure can be shown to be equivalent to
the well-known quadratic color histogram distance measure [9]

(7)

where and are traditional histogram vectors of length
, and the coefficients of matrix are . In fact, if the

number of color bins in the histogram vector is large enough
such that all the representative colors are color bins of the his-
togram method, a color histogram vector can be constructed
using the percentage values. Ignoring all the zero entries and
rewriting the quadratic distance gives

(8)

During clustering, the minimum distance between two cluster
centroids can be set to as discussed above. Noting that

and (9)

it is easy to show that .

III. SEARCH AND RETRIEVAL

Each object or region in the database is represented using the
dominant color descriptor as defined in (1). Typically, three to
four colors provide a good characterization of the region colors.
Given a query image, similarity retrieval involves searching the
database for similar color distributions as the input query. Since
the number of representative colors is small, one can first search
the database for each of the representative colors separately, and
then combine the results. Fig. 1 illustrates the basic indexing and
search scheme.

Searching for individual colors can be done very efficiently
in a 3-D color space. We consider here only fixed range queries
where [see (5)] limits the search range. While one can
use well-known tree structures such as the R-tree [2] and
SS tree [24], a one-layer representation with a uniform space

partitioning designed specifically for the given range is more
effective [18]. One approach is to partition the color space
into a finite number of cubics of the same size. However,
such rectangular grid structures are not the most efficient for
spherical range queries.

A. D Lattice Structure

The D lattice has certain desirable properties in sphere
packing [5] that are relevant to spherical range queries

1) accuracy: D lattice gives the minimal total mean squared
quantization errors among all the lattice structures in the
3-D space;

2) efficiency: D lattice has the most optimal covering of
the 3-D space, i.e., the ratio of the volume of the smallest
sphere that covers the Voronoi cell to the volume of the
cell is minimum for the D lattice.

The structure of a D lattice is quite simple. The basic lat-
tice consists of the points where and are all
even or all odd integers. For example, (0, 0, 0), (1, 1, 3), and
(2, 10, 20) belong to the Dlattice. These points can be scaled
and shifted to have desired lattice point intervals and locations.
There are two important parameters in the lattice design:, the
minimum radius of a sphere that can cover the Voronoi cell, and

, the maximum radius of a sphere that the Voronoi cell can
cover. Fig. 2 illustrates these parameters for the 2-D case. For
the basic D lattice, .
The calculation of , however, is a slightly more complicated.
In [5], the ratio between these two variables is provided, i.e.

. The value of is set during the lattice design.
One can calculate the scaling factorthat scales the basic D
lattice using the following relationship:

(10)

For example, given the lattice points (1, 1, 1) and (2, 0, 0), the
corresponding scaled lattice points are ( ) and ( , 0, 0),
respectively.

Given an arbitrary (query) point in the 3-D space, the cor-
responding nearest lattice point can be easily computed as
follows. Let

round (11)

and

(12)

where , and is the step size along the coordinate axes.
For example, for the basic lattice. The origin is assumed
to be a lattice point. Note that is the nearest even lattice point
and is the nearest odd lattice point to the given point. Let

. Then

(13)

For a range query, one need to compute all the lattice points that
are within a sphere of radius centered at a given point in the
3-D color space. For this, first compute all the lattice points in
the cubic of size by centered at the query point. This can
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Fig. 4. Average precision versus number of retrievals.

Fig. 5. Average recall versus number of retrievals.

be done using eqs. (11)–(13). The lattice points that are outside
the range are then eliminated by computing the Euclidean
distance to the query point.

B. Indexing

In building the database, each region color is assigned to its
nearest lattice point. Table I shows an example of the data struc-
ture of an indexing node. The image region ID is a unique in-
teger label that identifies each region in the database. The entries
in each index node are sorted by these ID numbers. After the
indexing node of the new entry is found, its region ID is com-
pared to the list of sorted region IDs in the node and is inserted
into the right location in the sorted list. The proposed indexing
scheme allows the database to be dynamic, which means that
insertions and deletions of database entries are straightforward

and without the need to reconstruct the entire index structure of
the database.

During the search process, however, in addition to the nearest
lattice point to the query color, other nearby lattice points are
also to be considered because the query color can lie near the
boundaries of the lattice cells. Fig. 3 illustrates this for the two-
dimensional (2-D) case where the desired search radiusis the
query search range and the actual search radiusis the min-
imum search distance for lattice points such that the desired
sphere of radius is covered. Let denote the minimum radius
of a sphere that can cover a Voronoi cell, as shown in Fig. 3.
Note that .

Since and an indexing node contains all the entries in
its Voronoi cell, a part of the search space does not contain any
relevant matches. For example, for the 2-D case shown in Fig. 3
the actual search space includes all the shaded areas. For a given
search range, the value of in the lattice design is important
to the retrieval performance. A small value ofmeans that the
actual search space is only slightly larger than the desired search
space, and therefore most of the accessed indexing nodes are
relevant. However, there is a trade-off because the number of the
indexing nodes increase asdecreases and the indexing itself
becomes less efficient. The number of indexing nodes accessed
per query color is and does not directly depend on
the database size.

The lattice structure can also have more than one layer of rep-
resentation. If a Voronoi cell is dense with too many entries, its
space can be further divided into a set of subcells. This results
in a hierachical lattice structure. Hierachical lattice structures
have been used in VQ-based image coding [15]. There should
be multiple fixed search ranges, one for each level. A careful
design of the hierachical structure could improve retrieval effi-
ciency. However, in the experiments we use only a single layer
representation.

C. Search Procedure

The complete search procedure includes the following steps.

Step 1) For each query color, find the matching regions that
contain similar colors by using the lattice indexing
structure. To quickly eliminate some false matches,
a threshold is set for the difference between the
query percentage and the retrieved percentage.
A matching region is eliminated if the following con-
dition is not satisfied:

(14)

Step 2) Join the matching results from all the query colors
and eliminate all the false matches. Regions that sat-
isfy the following two conditions are considered as
the final retrieval candidates:

and (15)

and where and index the matched colors. Partially
matched entries in the database are quickly elimi-
nated. is set to 0.6 in the experiments.
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Fig. 6. Example of region-based image search using the dominant color descriptor. The query is the snowcap on the mountain. Top six retrievals are shown.

Fig. 7. Example of region-based image search using the dominant color descriptor. The query is the foliage in autumn. Top six retrievals are shown.

Step 3) Calculate the distances between the retrievals and
the query and rank them in order. For the indexing
and the distance measure to be consistent, the de-
sired search radiusshould equal , the maximum
distance for two colors to be considered similar, as
defined in Section III.

Step 4) If a range query is issued, all of the matching candi-
dates with distances smaller than the given range are
returned. If an nearest neighbor query is issued,
the top candidates are returned.

Step 1) and Step 2) quickly eliminate a large number of false
matches. Step 3) involves more expensive calculations, but only
for the final retrievals in the database. Overall, the computa-

tional complexity of the search procedure is low. Note that the
number of random disk accesses is , where is the
number of colors in the query, typically 3–5,is the number of
nodes accessed per query color. Note that the traditional color
histogram is difficult to index as the complexity of indexing
grows rapidly with the number of dimensions. In contrast, the
dominant color descriptor is indexed in the low-dimensional
3-D color space.

IV. EXPERIMENTAL RESULTS

The dominant color descriptor is tested on a database of 2500
color images from COREL. After the segmentation, more than
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26 000 regions are obtained. Among them, 25 image regions
containing a variety of colors and color combinations are chosen
as queries. To best characterize the color information, all of
the processing is done in the perceptually uniform CIE LUV
color space. The parameter values used in the experiments are

, , , , .
Table II summarizes some of the experimental data. On average
there are 3.5 representative colors per region after clustering.
Four numbers are needed to represent each dominant color, three
for the color value and one for the percentage value. Thus, on
average the proposed dominant color descriptor requires only
14 numbers. The average number of nodes accessed per query
is a small fraction (134.9/1553 8.7%) of the indexing nodes.

We compare the retrieval performance of the dominant color
descriptor to the traditional color histogram descriptor. The pro-
posed method can be seen as a variation of the histogram ap-
proach in terms of the color feature vector and the distance mea-
sure used. A 1024-D color histogram feature vector is extracted
from each image region in the database. Using this histogram
representation, the top 100 matches are obtained for each of the
query image regions. Note that this requires 1024 numbers per
region, as compared to only 14 numbers (on average) per re-
gion in the proposed method. For comparison, we computer the
SVD on the quadratic matrix as suggested in [9] and obtain a
14-D transformed color histogram vector. Again, an exhaustive
search of the database is performed to find the top 100 retrievals
using this SVD approach.

Before the evaluation, subjective testing is done to determine
the relevant matches in the database to the query image regions.
The top 100 retrievals from both the histogram and the proposed
approaches are marked by five subjects to decide whether they
are indeed visually similar in color. Those marked by at least
three out of the five subjects are considered as relevant matches
and the others are considered as false matches. Because it is im-
practical to go through the entire database to find all the relevant
matches for the queries, the union of relevant retrievals from the
two methods is used as the approximate “ground truth” to eval-
uate the retrieval accuracy. The retrieval accuracy is measured
by precision and recall

Precision and Recall (16)

where is the number of retrievals, is the number of rel-
evant matches among all the retrievals, and is the total
number of relevant matches in the database obtained through
the subjective testing.

The precision and recall values for are listed in
Table III. The average precision and recall curves are plotted
in Figs. 4 and 5. It can be seen from the table and the figures
that the proposed method achieves good results in terms of
the retrieval accuracy compared to the histogram method.
Its performance is close to the high-dimensional histogram
method and is much better than the SVD approach. Figs. 6
and 7 show two example retrievals. One query is the dark-blue
and white colored snowcap on the mountain. The other is the
mixed red, yellow and green colored foliage in autumn. The top
six retrievals in both examples show a good match of colors.
More examples and a demonstration of the region-based image

search using the proposed color indexing method can be found
at http://maya.ece.ucsb.edu/Netra/index2.html.

V. CONCLUSION

In this work, a dominant color representation for image re-
gions is proposed. The dominant color descriptor consists of the
representative colors in the region and their distribution. A sim-
ilarity measure is defined for the proposed color descriptor and
is shown to be equivalent to the quadratic color histogram dis-
tance measure. An efficient color indexing scheme for image
retrieval using this color descriptor is presented. Experimental
results show that the proposed method is fast and effective.

There are some limitations of the proposed retrieval system.
One problem is that the approach is still based on low-level vi-
sual features and hence the retrieved matches do not necessarily
correspond to any high-level semantics. Another limitation of
the system is that it does not handle the spatial relationship be-
tween regions in the image. More work is needed to address
these issues.
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