
Abstract
A practical method for creating a high dimensional index structure that adapts
to the data distribution and scales well with the database size, is presented. Typ-
ical media descriptors, such as texture features, are high dimensional and are
not uniformly distributed in the feature space. The performance of many existing
methods degrade if the data is not uniformly distributed. The proposed method
offers an efficient solution to this problem. First, the data’s marginal distribu-
tion along each dimension is characterized using a Gaussian mixture model.
The parameters of this model are estimated using the well known Expectation-
Maximization (EM) method. These model parameters can also be estimated
sequentially for on-line updating. Using the marginal distribution information,
each of the data dimensions can be partitioned such that each bin contains
approximately an equal number of objects. Experimental results on a real image
texture data set are presented. Comparisons with existing techniques, such as
the well known VA-File, demonstrate a significant overall improvement.

1   Introduction
Typical audio-visual descriptors are high dimensional vectors and not uniformly dis-

tributed [6]. These descriptors are useful in content based image/video retrieval, data min-
ing and knowledge discovery. To index high dimensional feature vectors, various index
structures such as R*-tree, X-tree, TV-tree, etc., have been proposed. A good overview
and analysis of these techniques can be found from [5]. The study in [5] also argued that
typical tree based index methods are outperformed by a linear search when the search
dimensions exceed 10. This has motivated the introduction of approximation methods [2,
5] to speed up the linear search.

Approximation based methods have certain advantages. First, they support different
distance measures. This is an important property especially for learning and concept min-
ing related applications. Secondly, the construction of approximation can be made adap-
tive to the dimensionality of data. However, the approximation method [5] is sensitive to
data’s distribution. does not perform well when feature vectors are not uniformly distrib-
uted.

In [5], the approximation is constructed by partitioning the feature space into hyper
rectangles. The grids on each dimension are equally spaced. We refer to such uniform par-
titioning as "regular approximation" in the following discussion. In [2], the feature space
is first transformed using the KL-transform to reduce the correlation of data at different
dimensions. Secondly, in the transformed space, the data in each dimension is clustered
into a pre-assigned number of grids using the Lloyd’s algorithm. But in [3], it is reported
that for high dimensional data, transforming the data space by rotation does not result in a
significant decorrelation of the data. This implies that global statistics, such as the second
order statistics used in [2], may not be able to characterize the data distribution effectively
for high dimensional spaces.

In this work, we propose an effective and practical solution to adapt the design of the
approximation based index structure to the data’s distribution. The main idea of the pro-
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posed method is to model the marginal distribution of the data using a mixture of Gauss-
ians and use the estimated parameters of the model to partition the data space. By adapting
the construction of approximations to data’s marginal distribution, the proposed method
overcomes the sensitivity of index performance to data’s distribution, thus resulting in a
significant improvement compared with regular the VA-File [2, 5]. 

In the next section, we summarize the construction of regular approximation and its
associated indexing. We also discuss the limitations of using regular approximation. Our
proposed method is presented in Section 3. Experimental results are provided in Section 4.

2   Regular Approximation

2.1   Construction of regular approximation [5]

In regular approximation methods, such as the VA-File approach [5], the range of the
feature vectors in each dimension is uniformly partitioned. Let D denote the total number
of dimensions of data space, and let  bits ( ) be allocated to each of the

dimensions. Then the range of feature values on dimension  is segmented to  parti-

tions by a set of boundary points, denoted as  ( ) with equal length,

each partition is uniquely identified by a binary string of length . The high dimensional

space is in turn segmented into D dimensional hyper cells. Each of them can be uniquely

identified by a binary string of length B ( ). For a feature vector ,

, wherein N is the total number of object in a database, its approximation is

such a binary string of length B to indicate which hyper cell it is contained in. If 

falls into a partition bounded by , it satisfies 

(1)
So the boundary points provide an approximation of the value of . As in [5], a
lower bound and a upper bound of the distance between any vector with a query vector
can be computed using this property.

Figure 1 gives an illustrative example of constructing the regular approximation for
two dimension data. The 1856 image objects are collected from the Brodatz album [4].
Figure 1 shows the first two components of the 60 dimensional feature vectors computed
in [4]. The feature distribution is clearly not uniform. 

2.2   Indexing based on regular approximation

Approximation based nearest neighbor search can be considered as a two phase filter-
ing process. In the first phase, the set of all approximations is scanned sequentially and
lower and upper bounds on the distances of each object in the database to the query object
are computed. In this phase, if an approximation is encountered such that its lower bound
is larger than the -th smallest upper bound found so far, the corresponding feature vector
can be skipped since at least k better candidates exist. At the end of the first phase filter-
ing, the set of vectors that are not skipped are collected as candidates for the second phase
filtering. Denote the number of candidates to be . 

In the second phase filtering, the actual  feature vectors are examined. The feature
vectors are visited in increasing order of their lower bounds and then exact distances to the
query vector are computed. If a lower bound is reached that is larger than the -th actual
nearest neighbor distance encountered so far, there is no need to visit the remaining candi-
dates. Let  denote the number of feature vectors visited before the thresholding lower
bound is encountered. 
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For approximation based methods, the index performance is measured by  and 
(see [5]). Smaller values of  and  indicate a better performance.

2.3   Limitations 

The effectiveness of using VA-File based indexing structure is sensitive to data’s dis-
tribution. For the example given in Figure 1, the data on each dimension is not uniformly
distributed. As a result, if a query vector happens to be one that falls into the cell “A” in
Figure 1, in which approximately 30% of elements are contained, we will have 
and , which indicates a poor block selectivity and a high I/O cost, see [5]. 

This example illustrates one of the shortcomings of the regular approximation. In such
cases, the first phase filtering still results in a large number of items to search. Our pro-
posed method specifically addresses this problem.

3   Approximation Based on Marginal Distribution
Densely populated cells can potentially degrade the indexing performance. For this

reason, we propose an approach to adaptively construct the approximation of feature vec-
tors. The general idea is to first estimate data’s marginal distribution in each dimension.
Secondly, individual axes are partitioned such that the data has equal probability of falling
into any partition. The approximation such constructed reduces the possibility of having
densely populated cells, which in turn improves the indexing performance. 

3.1   pdf modeling using mixture of Gaussians

Denote  to be the pdf of data on dimension . The algorithm introduced below is
applied to data in each dimension independently. For notation simplicity, we denote 
to be the pdf of an one dimensional signal. The one-dimensional pdf is modeled using a
mixture of Gaussians, represented as

(2)

where

(3)
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The coefficients  are called the mixing parameters, which satisfies
and .

The task of estimating the pdf is then converted to be a problem of parameter estima-
tion. The parameters we need to estimate are , for . 

3.2    Parameter estimation using the EM algorithm

The classical maximum likelihood (ML) approach is used to estimate the parameters.
The task is to find , , to maximize 

(4)

where , , are the given data set. 
A simple and practical method of solving this optimization problem is to use the

Expectation-Maximization algorithm [1]. Given N data  available as the input for the
estimation, EM algorithm estimates the parameters iteratively using all the N data in each
iteration. Let  denote the iteration number. Then the following equations are used to
update the parameters

(5)

(6)

(7)

Using Bayes’ theorem [1], the  is computed as 

(8)

where

(9)

3.3    Sequential updating of parameters

Using the formulas given in equations (5), (6) and (7), the parameters can be estimated
given that the N data are available. For a large database, N is usually only a small portion
of the total number of elements in the database. In practice, it is desirable to have an incre-
mental pdf update scheme that can track the changes of the data distribution. The EM
algorithm can be modified for sequential updating [1]. Given that  is
the parameter set estimated form using the N data , the updated parameter set, when
there is a new data  coming in, can be computed as

(10)

(11)
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(13)

The conditional probability  is computed as in (8) and (9). 

3.4   Bit allocation

Denote the estimated pdf to be  as the approximation of . The objective of
nonlinear quantization is to segment the pdf into grids of equal area. If the boundary points
are denoted by , , b is the number of bits allocated, the boundary points
should satisfy

(14)

Using this criterion, the boundary points can be determined efficiently from a single scan
of the estimated pdf.

3.5   Approximation updating

For dynamic databases, the pdf estimates are to be updated periodically. In our imple-
mentation, we update the estimates whenever a certain number of new data items are
added. The approximation and pdf quantization are updated only when the new pdf,
denoted as , differs significantly from the current pdf, denoted as . We use
the following measure to quantify this change

(15)

The approximation on that dimension is updated when  is larger than a certain threshold. 

4   Experiments and Discussions 
Our evaluation is performed on a database containing 275,465 aerial photo images.

For each image, the method developed in [4] is used to extract a 60 dimensional texture
feature descriptor. Initially, around 10% of total number of image objects are used to ini-
tialize the pdf estimation using the algorithms proposed in Section 3.2. Based on the esti-
mated pdf, the approximation is constructed to support nearest neighbor search of the
whole database. Meanwhile, an updating strategy is developed to take the rest of the data
as input to the on-line estimation. For each dimension, when the change of the estimated
pdf, which is measured by (15), is beyond the threshold , the approximation is
adjusted accordingly. 

The approach that uses the regular approximation, VA-File, is also implemented for
comparison purpose. The number of candidate  and the number of visited feature vec-
tors  are used to evaluate the performance. We tested using 3, 4, 5 and 6 bits for each
dimension to construct the approximation. For each approximation, we consider the que-
ries to be all image items in the database. For each query, the 10 nearest neighbor search is
performed and results in a  and a . The average performances of  and  are
computed by averaging  and  from all queries. The results are shown in Figure 2(a)
and (b) for  and , respectively. Note that the figures are plotted on a logarithmic Y-
axis. To normalize the results into the same range for displaying, the maximum value of

( ) of VA-File is used to normalize all the values of ( ). As observed,  for
the VA-File is about 3 to 20 times more than the proposed adaptive method (Figure 2(a)).
After the second phase filtering, the VA-File visits 16 to 60 times more feature vectors
than the proposed method (Figure 2(b). One can conclude that the adaptive pdf quantiza-
tion results in an order of magnitude performance improvement over the regular VA-File.

We have also investigated the indexing performance as the size of the database grows.
For this purpose, we construct 4 databases, including 10%, 25%, 50% and 100% percent
of the total 275,645 image objects. For each dimension, 6 bits are assigned to construct the
approximation. In measuring the scalability, we are mainly concerned with  as this
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Fig 2. Comparison between VA-File and the proposed method: (a) Number of candidates (N1); (b) Number
of visited feature vectors (N2) after the second phase filtering.The proposed methods offers a significant
reduction in N1 and N2 compared to the VA files.
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relates directly to the I/O cost of the index structure. Figure 3 illustrates that as the size of
the database grows, how fast the number of candidates  increase for the VA-File and
the proposed approach. As can be observed, in terms of the scalability with the size of
databases, the proposed method tends to maintain a much better sub-linear behavior as the
database grows.   

We have presented a novel adaptive indexing scheme for high-dimensional feature
vectors. The method is adaptive to the data distribution.  The indexing performance scales
well with the size of the database. Experiments demonstrate a significant improvement
over the VA-file data structures for high dimensional datasets. 
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